首页> 外文会议>International Conference on Behavioral, Economic, and Socio-Cultural Computing >Discovering Latent Psychological Structures from Self-Report Assessments of Hospital Workers
【24h】

Discovering Latent Psychological Structures from Self-Report Assessments of Hospital Workers

机译:从医院工作人员的自我报告评估中发现潜在的心理结构

获取原文

摘要

Hospitals are high-stress environments where workers face a high risk of occupational burnout due to a mix of imbalanced schedules, understaffing, and emotional stress. In this paper, we propose a computational framework to infer the latent psychological makeup and traits of hospital workers. We apply machine learning models to psychometric data obtained from a suite of psychological survey instruments, collected as a part of TILES, a ten-week research study carried out in a large Los Angeles hospital. The study population represents over 200 hospital employees, including nurses and those in administrative positions. A computational framework that combines clustering and non-negative matrix factorization was used to extract the latent interplay between psychological constructs along dimensions of health, affect, personality, cognitive ability, and job performance. We illustrate how the proposed framework can help reveal the latent psychological structures related to occupational burnout.
机译:医院是在高压力环境中,由于时间表不平衡,人员不足和情绪紧张,工人面临职业倦怠的高风险。在本文中,我们提出了一个计算框架来推断医院工作人员的潜在心理构成和特质。我们将机器学习模型应用于从一系列心理调查工具中获得的心理测量数据,这些数据是作为TILES的一部分收集的,TILES是在洛杉矶一家大型医院进行的为期十周的研究。研究人群代表200多名医院员工,包括护士和行政管理人员。结合聚类和非负矩阵分解的计算框架用于提取沿健康,情感,个性,认知能力和工作绩效等维度的心理结构之间的潜在相互作用。我们说明了所提出的框架如何帮助揭示与职业倦怠相关的潜在心理结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号