首页> 外文会议>International Conference on Bangla Speech and Language Processing >Unconventional Wisdom: A New Transfer Learning Approach Applied to Bengali Numeral Classification
【24h】

Unconventional Wisdom: A New Transfer Learning Approach Applied to Bengali Numeral Classification

机译:非常规智慧:一种应用于孟加拉语数字分类的新迁移学习方法

获取原文

摘要

place in the Kaggle Numta competition, where the challenge was to classify images of isolated Bangla numerals. The best result reported in this paper is an accuracy of 97.09% on the NumtaDB Bengali handwritten digit datasets test set, which was obtained by freezing intermediate layers. The unconventional approach used in this paper produces better results than conventional transfer learning while taking less epochs and having almost half the number of trainable narameters.
机译:在Kaggle Numta比赛中,挑战是对孤立的孟加拉语数字图像进行分类。本文报告的最佳结果是通过冻结中间层获得的NumtaDB孟加拉语手写数字数据集测试集的准确性为97.09%。本文中使用的非常规方法比传统的转移学习产生更好的结果,同时花费的时间更少,并且可训练的纳米数几乎是一半。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号