首页> 外文会议>International Conference on Automation;Congress of the Chilean Association of Automatic Control >A predictive neural network for biomass and substrate concentration estimation applied to the fermentation of Bifidobacterium longum ATCC15707
【24h】

A predictive neural network for biomass and substrate concentration estimation applied to the fermentation of Bifidobacterium longum ATCC15707

机译:用于生物量和底物浓度估计的预测神经网络在长双歧杆菌ATCC15707发酵中的应用

获取原文

摘要

This work presents the results of a predictive neural network model coupled with a mass balance equation applied to a Bifidobacterium longdum culture. The model can estimate the concentration of biomass and substrate for 17 hours from a single measurement at the beginning of the process. The data for the neural network training was obtained from experiments, in which values of current biomass, substrate and time were acquired. A Fourier filter was applied to the data to reduce high frequency variations attributed to experimental error. Results shows that the model obtained can estimate the growing behavior of the microorganisms and substrate consumption. These estimations can be used to reduce the amount of labor-intensive measurements of biomass and substrate concentration required to automate the process.
机译:这项工作提出了预测的神经网络模型的结果,再加上应用于双歧杆菌培养的质量平衡方程。该模型可以从过程开始时的一次测量中估算出17个小时内生物质和底物的浓度。从实验中获得了用于神经网络训练的数据,其中获得了当前生物量,底物和时间的值。将傅立叶滤波器应用于数据以减少归因于实验误差的高频变化。结果表明,所获得的模型可以估计微生物的生长行为和底物消耗。这些估计可用于减少自动化过程所需的劳动密集型生物量和底物浓度测量值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号