首页> 外文会议>International Conference on Automatic Face and Gesture Recognition >Performance Analysis of Unimodal and Multimodal Models in Valence-Based Empathy Recognition
【24h】

Performance Analysis of Unimodal and Multimodal Models in Valence-Based Empathy Recognition

机译:基于价态的共情识别中的单峰和多峰模型性能分析

获取原文

摘要

The human ability to empathise is a core aspect of successful interpersonal relationships. In this regard, human-robot interaction can be improved through the automatic perception of empathy, among other human attributes, allowing robots to affectively adapt their actions to interactants' feelings in any given situation. This paper presents our contribution to the generalised track of the One-Minute Gradual (OMG) Empathy Prediction Challenge by describing our approach to predict a listener's valence during semi-scripted actor-listener interactions. We extract visual and acoustic features from the interactions and feed them into a bidirectional long short-term memory network to capture the time-dependencies of the valence-based empathy during the interactions. Generalised and personalised unimodal and multimodal valence-based empathy models are then trained to assess the impact of each modality on the system performance. Furthermore, we analyse if intra-subject dependencies on empathy perception affect the system performance. We assess the models by computing the concordance correlation coefficient (CCC) between the predicted and self-annotated valence scores. The results support the suitability of employing multimodal data to recognise participants' valence-based empathy during the interactions, and highlight the subject-dependency of empathy. In particular, we obtained our best result with a personalised multimodal model, which achieved a CCC of 0.11 on the test set.
机译:人的移情能力是成功的人际关系的核心方面。在这方面,可以通过对同情心的自动感知以及其他人类属性来改善人机交互,从而使机器人可以在任何给定情况下有效地使他们的行为适应交互者的感受。本文通过描述我们在半剧本演员-听众互动过程中预测听者的化合价的方法,来介绍我们对一分钟渐进(OMG)移情预测挑战的一般轨迹的贡献。我们从交互中提取视觉和听觉特征,并将其馈入双向长期短期记忆网络,以捕获交互过程中基于价的共情的时间依赖性。然后训练通用的和个性化的单峰和多峰基于价的共情模型,以评估每种形式对系统性能的影响。此外,我们分析了对象内对移情感知的依赖性是否会影响系统性能。我们通过计算预测和自注释化合价分数之间的一致性相关系数(CCC)来评估模型。结果支持在交互过程中采用多模式数据来识别参与者基于效价的同理心的重要性,并强调同情心的主体依赖性。特别是,我们通过个性化的多峰模型获得了最佳结果,该模型在测试集上的CCC为0.11。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号