首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Locally linear discriminant analysis for multimodally distributed classes for face recognition with a single model image
【24h】

Locally linear discriminant analysis for multimodally distributed classes for face recognition with a single model image

机译:多模态分布类的局部线性判别分析,用于通过单个模型图像进行人脸识别

获取原文
获取原文并翻译 | 示例

摘要

We present a novel method of nonlinear discriminant analysis involving a set of locally linear transformations called "Locally Linear Discriminant Analysis" (LLDA). The underlying idea is that global nonlinear data structures are locally linear and local structures can be linearly aligned. Input vectors are projected into each local feature space by linear transformations found to yield locally linearly transformed classes that maximize the between-class covariance while minimizing the within-class covariance. In face recognition, linear discriminant analysis (LIDA) has been widely adopted owing to its efficiency, but it does not capture nonlinear manifolds of faces which exhibit pose variations. Conventional nonlinear classification methods based on kernels such as generalized discriminant analysis (GDA) and support vector machine (SVM) have been developed to overcome the shortcomings of the linear method, but they have the drawback of high computational cost of classification and overfitting. Our method is for multiclass nonlinear discrimination and it is computationally highly efficient as compared to GDA. The method does not suffer from overfitting by virtue of the linear base structure of the solution. A novel gradient-based learning algorithm is proposed for finding the optimal set of local linear bases. The optimization does not exhibit a local-maxima problem. The transformation functions facilitate robust face recognition in a low-dimensional subspace, under pose variations, using a single model image. The classification results are given for both synthetic and real face data.
机译:我们提出了一种非线性判别分析的新方法,涉及一组称为“局部线性判别分析”(LLDA)的局部线性变换。基本思想是全局非线性数据结构是局部线性的,局部结构可以线性对齐。通过线性变换将输入向量投影到每个局部特征空间中,这些线性变换可产生局部线性变换的类,这些类使类间协方差最大化,而使类内协方差最小。在人脸识别中,线性判别分析(LIDA)由于其效率而被广泛采用,但是它不能捕获表现出姿势变化的人脸的非线性流形。为了克服线性方法的缺点,已经开发了基于核的常规非线性分类方法,诸如广义判别分析(GDA)和支持向量机(SVM),但是它们具有分类和过度拟合的高计算成本的缺点。我们的方法适用于多类非线性判别,与GDA相比,它的计算效率很高。该方法不会由于解决方案的线性基础结构而过度拟合。提出了一种新颖的基于梯度的学习算法,用于寻找局部线性基准的最优集合。该优化不存在局部最大值问题。变换功能可使用单个模型图像在姿势变化下的低维子空间中实现鲁棒的人脸识别。给出了合成和真实面部数据的分类结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号