首页> 外文会议>International Conference on Artificial Intelligence in Education >4D Affect Detection: Improving Frustration Detection in Game-Based Learning with Posture-Based Temporal Data Fusion
【24h】

4D Affect Detection: Improving Frustration Detection in Game-Based Learning with Posture-Based Temporal Data Fusion

机译:4D情感检测:通过基于姿势的时间数据融合,改进基于游戏的学习中的挫败感检测

获取原文

摘要

Recent years have seen growing interest in utilizing sensors to detect learner affect. Modeling frustration has particular significance because of its central role in learning. However, sensor-based affect detection poses important challenges. Motion-tracking cameras produce vast streams of spatial and temporal data, but relatively few systems have harnessed this data successfully to produce accurate run-time detectors of learner frustration outside of the laboratory. In this paper, we introduce a data-driven framework that leverages spatial and temporal posture data to detect learner frustration using deep neural network-based data fusion techniques. To train and validate the detectors, we utilize posture data collected with Microsoft Kinect sensors from students interacting with a game-based learning environment for emergency medical training. Ground-truth labels of learner frustration were obtained using the BROMP quantitative observation protocol. Results show that deep neural network-based late fusion techniques that combine spatial and temporal data yield significant improvements to frustration detection relative to baseline models.
机译:近年来,人们对利用传感器检测学习者情感的兴趣日益浓厚。挫折建模因其在学习中的核心作用而具有特殊意义。然而,基于传感器的影响检测提出了重要的挑战。运动跟踪摄像机产生大量的空间和时间数据流,但是相对较少的系统已经成功地利用了这些数据,以在实验室外产生精确的运行时检测学习者沮丧感的检测器。在本文中,我们介绍了一种数据驱动的框架,该框架利用基于深度神经网络的数据融合技术利用时空姿势数据来检测学习者的挫败感。为了训练和验证检测器,我们利用Microsoft Kinect传感器收集的姿势数据,这些数据来自与基于游戏的学习环境进行交互的学生,以进行紧急医学培训。使用BROMP定量观察方案获得学习者挫败感的真实标签。结果表明,基于深度神经网络的后期融合技术结合了时空数据,相对于基线模型,可以显着改善沮丧感。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号