首页> 外文会议>International Conference on Artificial Intelligence in Education >Using 'Idealized Peers' for Automated Evaluation of Student Understanding in an Introductory Psychology Course
【24h】

Using 'Idealized Peers' for Automated Evaluation of Student Understanding in an Introductory Psychology Course

机译:在入门心理学课程中使用“理想化的同伴”自动评估学生的理解

获取原文

摘要

Teachers may wish to use open-ended learning activities and tests, but they are burdensome to assess compared to forced-choice instruments. At the same time, forced-choice assessments suffer from issues of guessing (when used as tests) and may not encourage valuable behaviors of construction and generation of understanding (when used as learning activities). Previous work demonstrates that automated scoring of constructed responses such as summaries and essays using latent semantic analysis (LSA) can successfully predict human scoring. The goal for this study was to test whether LSA can be used to generate predictive indices when students are learning from social science texts that describe theories and provide evidence for them. The corpus consisted of written responses generated while reading textbook excerpts about a psychological theory. Automated scoring indices based in response length, lexical diversity of the response, the LSA match of the response to the original text, and LSA match to an idealized peer were all predictive of human scoring. In addition, student understanding (as measured by a posttest) was predicted uniquely by the LSA match to an idealized peer.
机译:教师不妨使用开放式学习活动和测验,但与强制选择工具相比,评估工作繁重。同时,强制选择评估受猜测问题(当用作测试时)的困扰,可能不会鼓励有价值的建构行为和理解的产生(当用作学习活动时)。先前的工作表明,使用潜在语义分析(LSA)对已构造的响应(例如摘要和论文)进行自动评分可以成功预测人类评分。这项研究的目的是测试当学生从描述理论并为其提供证据的社会科学课本中学习时,是否可以使用LSA生成预测指标。语料库由阅读有关心理学理论的教科书摘录时产生的书面回应组成。基于响应长度,响应的词法多样性,响应与原始文本的LSA匹配以及与理想同伴的LSA匹配的自动评分指数都可以预测人类评分。此外,LSA与理想同伴的匹配是对学生理解(通过后测测得)的唯一预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号