首页> 外文会议>International Conference on Artificial Intelligence and Data Processing >Predicting Small Molecule Potency to Inhibit Estrogen Receptors using Machine Learning and Deep Learning Approaches
【24h】

Predicting Small Molecule Potency to Inhibit Estrogen Receptors using Machine Learning and Deep Learning Approaches

机译:使用机器学习和深度学习方法预测小分子抑制雌激素受体的能力

获取原文

摘要

Uncovering new therapeutic potentials of existing approved drugs is an accelerated process of drug discovery as compared to designing a new drug from scratch. Launching a new drug into the market is challenging in terms of laborious efforts, time, cost and risks attached. Identifying the potency of the drug in terms of their binding affinity offers a new avenue of research concerning faster and cheaper health-care solution. In this regards, predicting the binding affinity of various drugs to a specific target receptor-like Estrogen receptor can lead to deeper insights. Estrogen receptor plays a significant role in diseases like breast cancer, ovarian cancer and endometrial cancer. Computational techniques like advanced deep learning models have shown effective results with complex data. In the proposed model, we construct a deep neural network with open-source Tensorflow python package to predict the binding affinities of small molecules with respect to Estrogen receptors. Small molecules are represented as feature vectors comprising of binding affinities to the other targets within the dataset. Based on the behaviour of a compound to inhibit the rest of the targets, we predict its potential binding affinity to bind to the estrogen receptors. The linear regression model is trained on the binding data from BindingDB database consisting of 7962 small molecules and a unique set of 995 target receptors. The performance of simple linear regression technique is compared to the deep neural network based linear regression estimator function in terms of mean squared error estimates. Better performance obtained with deep learning approach indicates that these advanced techniques in the domain of artificial intelligence should be further investigated for drug-target binding affinity prediction. Sources to reproduce the analysis are available at https://github.com/hetalraj/Bindingaffinity.
机译:与从头开始设计新药相比,发现现有已获批准的药物的新治疗潜力是加速药物发现的过程。就费力的工作,时间,成本和附带的风险而言,将新药投放市场是具有挑战性的。根据结合亲和力来确定药物的效力,为研究更快,更便宜的保健解决方案提供了新的途径。在这方面,预测各种药物对特定靶标受体样雌激素受体的结合亲和力可导致更深入的了解。雌激素受体在诸如乳腺癌,卵巢癌和子宫内膜癌的疾病中起重要作用。诸如高级深度学习模型之类的计算技术已对复杂数据显示出有效的结果。在提出的模型中,我们使用开源Tensorflow python包构建了一个深层神经网络,以预测小分子相对于雌激素受体的结合亲和力。小分子表示为特征向量,包括与数据集中其他目标的结合亲和力。基于化合物抑制其余靶标的行为,我们预测其与雌激素受体结合的潜在结合亲和力。线性回归模型在BindingDB数据库的结合数据上训练,该数据库由7962个小分子和一组独特的995个靶受体组成。就均方误差估计而言,将简单线性回归技术的性能与基于深度神经网络的线性回归估计器功能进行了比较。深度学习方法获得的更好性能表明,应进一步研究人工智能领域的这些先进技术,以预测药物-靶标结合亲和力。复制分析的资料可在https://github.com/hetalraj/Bindingaffinity获得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号