首页> 外文会议>International Conference on Artificial Intelligence and Data Processing >Performance Comparison of SVM Kernel Types on Child Autism Disease Database
【24h】

Performance Comparison of SVM Kernel Types on Child Autism Disease Database

机译:SVM内核类型在儿童自闭症数据库中的性能比较

获取原文

摘要

In this work, a database was used under the name “Autistic Spectrum Disorder Screening Data for Children Data Set” which was acquired from the data warehouse (UCI database repository). This dataset contains information for 292 children with 21 attributes. Using Weka tool. Mentioned data were classified by whether is diagnosed with autism disease or not. Using four types of support vector machine kernels. Normalized polynomial kernel, polynomial kernel, PUK kernel and RBF kernel classifiers utilized in data mining. The values which were used for performance comparisons are accuracy, precision, sensitivity, F measure and confusion matrix for each kernel. In this study, 100% successful results of accuracy have been obtained with each of polynomial kernel and PUK kernel.
机译:在这项工作中,使用了一个名为“儿童数据集的自闭症谱系筛查数据”的数据库,该数据库是从数据仓库(UCI数据库存储库)获得的。该数据集包含具有21个属性的292名儿童的信息。使用Weka工具。所提及的数据根据​​是否被诊断出患有自闭症进行分类。使用四种类型的支持向量机内核。数据挖掘中使用的归一化多项式内核,多项式内核,PUK内核和RBF内核分类器。用于性能比较的值是每个内核的准确性,精度,灵敏度,F度量和混淆矩阵。在这项研究中,多项式核和PUK核均获得了100%成功的准确性结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号