首页> 外文会议>International Conference on Artificial Intelligence and Data Processing >Malatya Public Transportation Route Optimization via Ant Colony Algorithm
【24h】

Malatya Public Transportation Route Optimization via Ant Colony Algorithm

机译:基于蚁群算法的马拉蒂亚公共交通路线优化

获取原文

摘要

Increasing population density causes traffic densities in city centers. In this study, Ant Colony Algorithm (ACO) was used to find solutions to the traffic problems in crowded cities and Malatya province was chosen as the application region. Need of reducing the traffic intensity in the city centers, has led to the idea that the central stop of public transportation vehicles should be moved. This situation reveals the problem of changing the routes of public transport. In this study, ACO algorithm was used to analyze the new routes in the most ideal way. It is aimed to realize minimum distance and minimum traffic density by solving this problem which is similar to the traveling salesman problem. In order to achieve minimum traffic intensity, the threshold pheromone amount is determined to direct multiple vehicles to alternative routes. The data used in the analysis belongs to the public transportation vehicles of the city of Malatya. A java based program was used to construct the datasets and to solve the problem.
机译:人口密度的增加导致市中心的交通密度增加。在这项研究中,使用蚁群算法(ACO)寻找拥挤城市中交通问题的解决方案,并选择马拉蒂亚省作为应用区域。降低市中心交通强度的需要导致了这样一种想法,即应该移动公共交通工具的中央车站。这种情况揭示了改变公共交通路线的问题。在这项研究中,使用ACO算法以最理想的方式分析新路线。目的是通过解决与旅行商问题类似的问题来实现最小距离和最小交通密度。为了达到最小交通强度,确定阈信息素量以将多个车辆引导至替代路线。分析中使用的数据属于马拉蒂亚市的公共交通工具。使用基于Java的程序来构造数据集并解决该问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号