首页> 外文会议>International Conference on Applied Information Technology and Innovation >Classification Analysis of MotoGP Comments on Media Social Twitter Using Algorithm Support Vector Machine and Naive Bayes
【24h】

Classification Analysis of MotoGP Comments on Media Social Twitter Using Algorithm Support Vector Machine and Naive Bayes

机译:基于支持向量机和朴素贝叶斯算法的媒体社交Twitter MotoGP评论分类分析

获取原文

摘要

The high comment about the event of a motor racing motoGP race in a print media and electronic media, making the event makes the conversation of many people in the real world and in cyberspace. Especially in the digital era today is very easy for people to get the information they want, either through the website or through existing media social and sometimes the info is loaded in real time at the same time comment on the show about trending topics that exist in cyberspace. The curiosity of the public about info-info or comments circulating about the motoGP racing makes the conversation in the existing media social so that the topic becomes a popular topic in media social that post about the race of the motoGP race. This paper will do research how accurate the comments about the existing motoGP in existing media social such as twitter which became a forum for society to talk about the race of the motoGP race. In this paper will apply two classification algorithms to test how accurate the information or comments that become a lot of people talk through media social twitter. This paper will apply the Support Vector Machine and Navie Bayes algorithms in text mining processing. The result of SVM algorithm accuracy value is 95.50% while the value of NB accuracy is 93.00%.
机译:在平面媒体和电子媒体上对赛车motoGP竞赛活动的高度评价,使该活动成为现实世界和网络空间中许多人的对话。尤其是在当今的数字时代,人们可以很容易地通过网站或通过现有的社交媒体获得他们想要的信息,有时信息是实时加载的,同时对节目中存在的热门话题进行评论。网络空间。公众对有关motoGP赛车的信息或评论的好奇心使现有媒体社交中的对话成为可能,因此该话题成为发布有关motoGP种族的媒体社交中的热门话题。本文将研究在现有的媒体社会(如Twitter)中对现有motoGP的评论的准确性如何,twitter成为社会讨论motoGP竞赛的论坛。本文将应用两种分类算法来测试成为人们通过媒体社交Twitter交谈的信息或评论的准确性。本文将在文本挖掘处理中应用支持向量机和Navie Bayes算法。 SVM算法精度值的结果是95.50%,而NB精度值的结果是93.00%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号