首页> 外文会议>International Conference on Applied Information Technology and Innovation >Cervical Cancer Risk Classification Based on Deep Convolutional Neural Network
【24h】

Cervical Cancer Risk Classification Based on Deep Convolutional Neural Network

机译:基于深度卷积神经网络的宫颈癌风险分类

获取原文

摘要

To meet the challenge of the increasing types of disease in this modern era, technology plays a very important role in health research. Women's health has become a major concern because of the increasing rates of cervical cancer because it can be a deadly disease. In this study, we will use deep convolutional neural networks to find the accuracy in classifying cervical cancer data on four different types of methods. The cervical cancer data are represented by 32 risk factors and four target variables: Hinselmann, Schiller, Cytology, and Biopsy. The result with deep learning method is quite encouraging, we can see that each data were correctly classified with the total accuracy reach almost 90% for each target.
机译:为了应对现代疾病的挑战,技术在健康研究中起着非常重要的作用。由于子宫颈癌可能是致命的疾病,因此宫颈癌的发病率不断上升,因此妇女的健康已成为主要问题。在这项研究中,我们将使用深度卷积神经网络来找到在四种不同类型的方法上对宫颈癌数据进行分类的准确性。子宫颈癌数据由32个危险因素和四个目标变量表示:欣塞尔曼(Hinselmann),席勒(Schiller),细胞学和活检。深度学习方法的结果令人鼓舞,我们可以看到每个数据都被正确分类,每个目标的总准确率达到近90%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号