【24h】

Data Analytics Towards Predictive Maintenance for Industrial Ovens A Case Study Based on Data Analysis of Various Sensors Data

机译:面向工业烤箱的预测性维护的数据分析-基于各种传感器数据分析的案例研究

获取原文

摘要

In Industry 4.0, predictive maintenance aims to improve both production and maintenance efficiency. The interconnected machines and IoT devices produce a variety of data that enable the early detection of anomalies and failures by predictive analytic algorithms. Predictive analytics can also reduce the machines downtimes and decrease the production of faulty products. This paper introduces predictive analytics for industrial ovens and their application in a real-world's oven used by a leading medical devices manufacturer. Two distinct approaches are presented in this work. A technique based on existing sensors for oven failure prediction based on monitoring and log data; and a technique based on deployed sensors for fault diagnosis based on acoustic data. Deep learning techniques have been applied on existing sensor and event log data, especially temperature monitoring, whereas an outlier detection analysis were implemented on acoustic sensor measurements. Both analytics methods create a complete solution able to detect early oven failures from their root.
机译:在工业4.0中,预测性维护旨在提高生产和维护效率。互连的机器和IoT设备产生各种数据,这些数据可以通过预测分析算法尽早检测异常和故障。预测分析还可以减少机器停机时间并减少有缺陷产品的产量。本文介绍了工业烤箱的预测分析及其在领先的医疗设备制造商使用的现实烤箱中的应用。这项工作提出了两种不同的方法。一种基于现有传感器的技术,用于基于监视和日志数据进行烤箱故障预测;基于部署的传感器的技术,用于基于声学数据的故障诊断。深度学习技术已应用于现有的传感器和事件日志数据,尤其是温度监控,而对声音传感器的测量结果进行了异常检测分析。两种分析方法均可创建一个完整的解决方案,该解决方案能够从根本上检测出早期的烤箱故障。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号