首页> 外文会议>International Conference on Advanced Informatics: Concept Theory and Applications >Mining Top-k Frequent-regular Itemsets from Incremental Transactional Database
【24h】

Mining Top-k Frequent-regular Itemsets from Incremental Transactional Database

机译:从增量交易数据库中挖掘Top-k经常性项目集

获取原文

摘要

In the past decade, frequent-regular itemset mining (FRIM) has been proposed and applied in a wide range of applications. It aims to discover interesting itemsets frequently and regularly occurring in a static database. However, in real-world applications, the occurrence behavior of items/itemsets may change whenever the database is updated and there may be the situation of overwhelming or none of results generated if the user set inappropriate support threshold. Thus, we here introduce a new approach to mine top-k frequent-regular itemsets from incremental transactional database for mining results which allows users to control the number of results. In this approach, a set of k itemsets having highest frequency of occurrence and regularity occurring in a incremental database is generated. To mine such itemsets, an efficient single-pass algorithm called IMTFRI (Incremental Miner of Top-k Frequent-Regular Itemset) is proposed. The partitioned dynamic bit-vector is utilized to maintain occurrence information of each item/itemsets while mining. In addition, to avoid mining on each incremental database from scratch, the mining with baseline frequency setting technique is designed. Last, experimental studies have been conducted to investigate efficiency of IMTFRI algorithm in the terms of computational time and memory usage.
机译:在过去的十年中,经常规则项目集挖掘(FRIM)已被提出并应用于广泛的应用中。它的目的是发现静态数据库中经常且定期出现的有趣项集。但是,在实际应用中,每当数据库更新时,项目/项目集的发生行为就可能发生变化,并且如果用户设置了不适当的支持阈值,则可能会出现压倒性的情况或没有任何结果产生的情况。因此,我们在这里介绍一种新方法,该方法从增量事务数据库中挖掘前k个频繁定期项目集以挖掘结果,该方法允许用户控制结果的数量。在这种方法中,生成了在增量数据库中具有最高出现频率和规律性的k个项目集的集合。为了挖掘这样的项目集,提出了一种有效的单遍算法,称为IMTFRI(Top-k经常规则项目集的增量矿工)。分割后的动态位向量用于在挖掘时维护每个项目/项目集的出现信息。另外,为了避免从头开始在每个增量数据库上进行挖掘,设计了具有基准频率设置技术的挖掘。最后,进行了实验研究以从计算时间和内存使用方面研究IMTFRI算法的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号