首页> 外文会议>International conference on active media technology >Content and Expert Recommendation System Using Improved Collaborative Filtering Method for Social Learning
【24h】

Content and Expert Recommendation System Using Improved Collaborative Filtering Method for Social Learning

机译:改进的协同过滤方法进行社会学习的内容和专家推荐系统

获取原文

摘要

Social Learning as a new concept of learning model emphasizes an individual's activity and formation of relationships with other people. On the contrary, traditional recommendation system provides a target user with the appropriate recommendation information after analyzing a user's preference based on the user's profiles and rating histories. These kinds of systems need to modify recommendation algorithm; these traditional recommendation systems are limited to only two attributes - user profiles and rating histories - that includes the problem of recommendation reliability and accuracy. In this paper, we present a user-context based collaborative filtering (UCCF) using user-context and social relationships. The UCCF analyzes user-context and social relationships, and generates a similar user group which uses the user's recommendation score from similar user groups. The UCCF reflects strong ties of users who have similar tendency and improves reliability and accuracy of the content and expert recommendation system.
机译:社会学习作为一种新的学习模式概念,强调个人的活动和与他人的关系的形成。相反,传统的推荐系统在基于用户的个人资料和评价历史来分析用户的偏好之后,向目标用户提供适当的推荐信息。这类系统需要修改推荐算法;这些传统的推荐系统仅限于两个属性-用户配置文件和评分历史记录-包括推荐可靠性和准确性的问题。在本文中,我们提出了一种使用用户上下文和社交关系的基于用户上下文的协作过滤(UCCF)。 UCCF分析用户上下文和社交关系,并生成一个相似的用户组,该用户组使用来自相似用户组的用户推荐分数。 UCCF反映了趋势相似的用户之间的紧密联系,并提高了内容和专家推荐系统的可靠性和准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号