首页> 外文会议>International ACM SIGIR conference on research development in information retrieval >Beyond Bag-of-Words: Machine Learning for Query-Document Matching in Web Search
【24h】

Beyond Bag-of-Words: Machine Learning for Query-Document Matching in Web Search

机译:超越词袋:用于Web搜索中查询文档匹配的机器学习

获取原文

摘要

In web search, relevance is one of the most important factors to meet users' satisfaction, and the success of a web search engine heavily depends on its performance on relevance. It has been observed that many hard cases in search relevance are due to term mismatch between query and document (e.g., query 'ny times' does not match well with document only containing 'new york times'), and thus it is not exaggerated to say that dealing with mismatch between query and document is one of the most critical research problems in web search. Recently researchers have spent significant effort to address the grand challenge. The major approach is to conduct more query and document understanding, and perform better matching between enriched query and document representations. With the availability of large amount of log data and advanced machine learning techniques, this becomes more feasible and significant progress has been made recently.
机译:在Web搜索中,相关性是满足用户满意度的最重要因素之一,Web搜索引擎的成功很大程度上取决于其对相关性的表现。已经发现,与搜索相关的许多困难情况是由于查询和文档之间的术语不匹配(例如,查询“ ny times”与仅包含“ new York time”的文档不完全匹配),因此并没有夸大其词。他说,处理查询和文档之间的不匹配是网络搜索中最关键的研究问题之一。最近,研究人员花费了大量精力来应对这一巨大挑战。主要方法是进行更多的查询和文档理解,并在丰富的查询和文档表示之间进行更好的匹配。随着大量日志数据和先进的机器学习技术的可用性,这变得更加可行,并且最近已经取得了重大进展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号