首页> 外文会议>International ACM SIGIR conference on research development in information retrieval >Automatic Suggestion of Query-Rewrite Rules for Enterprise Search
【24h】

Automatic Suggestion of Query-Rewrite Rules for Enterprise Search

机译:自动建议企业搜索查询-重写规则

获取原文

摘要

Enterprise search is challenging for several reasons, notably the dynamic terminology and jargon that are specific to the enterprise domain. This challenge is partly addressed by having domain experts maintaining the enterprise search engine and adapting it to the domain specifics. Those administrators commonly address user complaints about relevant documents missing from the top matches. For that, it has been proposed to allow administrators to influence search results by crafting query-rewrite rules, each specifying how queries of a certain pattern should be modified or augmented with additional queries. Upon a complaint, the administrator seeks a semantically coherent rule that is capable of pushing the desired documents up to the top matches. However, the creation and maintenance of rewrite rules is highly tedious and time consuming. Our goal in this work is to ease the burden on search administrators by automatically suggesting rewrite rules. This automation entails several challenges. One major challenge is to select, among many options, rules that are 'natural' from a semantic perspective (e.g., corresponding to closely related and syntactically complete concepts). Towards that, we study a machine-learning classification approach. The second challenge is to accommodate the cross-query effect of rules-a rule introduced in the context of one query can eliminate the desired results for other queries and the desired effects of other rules. We present a formalization of this challenge as a generic computational problem. As we show that this problem is highly intractable in terms of complexity theory, we present heuristic approaches and optimization thereof. In an experimental study within IBM intranet search, those heuristics achieve near-optimal quality and well scale to large data sets.
机译:企业搜索具有挑战性,原因有几个,特别是企业领域专用的动态术语和行话。通过让域专家维护企业搜索引擎并使之适应特定领域,可以部分解决此挑战。这些管理员通常会解决用户对热门匹配项中缺少相关文档的投诉。为此,已经提出了允许管理员通过设计查询重写规则来影响搜索结果的方法,每个规则都指定了应如何修改或增加其他查询来扩充特定模式的查询。收到投诉后,管理员将寻求一个语义上一致的规则,该规则能够将所需文档推到最前面。但是,创建和维护重写规则非常繁琐且耗时。我们这项工作的目标是通过自动建议重写规则来减轻搜索管理员的负担。这种自动化带来了一些挑战。一个主要的挑战是从语义的角度(例如,对应于紧密相关和句法完整的概念)中选择许多“自然的”规则。为此,我们研究了一种机器学习分类方法。第二个挑战是适应规则的交叉查询效果-在一个查询的上下文中引入的规则可以消除其他查询的期望结果和其他规则的期望效果。我们将这一挑战的形式化表示为通用计算问题。正如我们从复杂性理论上显示此问题非常棘手时,我们提出了启发式方法及其优化方法。在IBM Intranet搜索中的一项实验研究中,这些启发式方法实现了接近最佳的质量,并且可以很好地扩展到大型数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号