首页> 外文会议>Intelligent robots and computer vision XXXII: algorithms and techniques >A superfast algorithm for self-grouping of multiple objects in the image plane
【24h】

A superfast algorithm for self-grouping of multiple objects in the image plane

机译:用于在图像平面中对多个对象进行自分组的超快速算法

获取原文
获取原文并翻译 | 示例

摘要

If we apply the developed local polar edge detection method, or LPED method, to a binary image (with each pixel being either black or white), we can obtain the boundary points of all objects embedded in the more randomly distributed noise background in sub-milli-second time. Then we can apply our newly developed grouping or clustering algorithm to separate the boundary points for all objects into individual-object, boundary-point groups. Then we can apply our fast identification-and-tracking technique to automatically identify each object by its unique geometry shape and track its movement simultaneously for N objects like we did before for two objects. This paper will concentrate at the algorithm design of this superfast grouping technique. It is not like the classical combinatorial clustering algorithm in which the computation time increases exponentially with the number of points to be clustered. It is a linear time grouping method in which the grouping time increases only linearly with the number of the total points to be grouped. The total time for automatic grouping of 100-200 boundary points into separated object boundary groups is about 10 to 50 milli-seconds Live computer experiments will be demonstrated in the presentation.
机译:如果我们将开发的局部极边缘检测方法或LPED方法应用于二值图像(每个像素为黑色或白色),我们可以获得嵌入到子图像中随机分布的噪声背景中的所有对象的边界点。毫秒时间。然后,我们可以应用我们新开发的分组或聚类算法将所有对象的边界点分离为单个对象的边界点组。然后,我们可以应用我们的快速识别和跟踪技术,通过其独特的几何形状自动识别每个对象,并像以前对两个对象一样,同时跟踪N个对象的运动。本文将集中讨论这种超快速分组技术的算法设计。这与经典的组合聚类算法不同,在经典的组合聚类算法中,计算时间随要聚类的点数呈指数增长。这是一种线性时间分组方法,其中分组时间仅随着要分组的总点数线性增加。自动将100-200个边界点分组为单独的对象边界组的总时间约为10到50毫秒。演示中将演示实时计算机实验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号