首页> 外文会议>Intelligent robots and computer vision XXXI: algorithms and techniques >Using Probabilistic Model as Feature Descriptor on a Smartphone Device for Autonomous Navigation of Unmanned Ground Vehicles
【24h】

Using Probabilistic Model as Feature Descriptor on a Smartphone Device for Autonomous Navigation of Unmanned Ground Vehicles

机译:在无人地面车辆自主导航的智能手机设备上使用概率模型作为特征描述符

获取原文
获取原文并翻译 | 示例

摘要

There has been significant research on the development of feature descriptors in the past few years. Most of them do not emphasize real-time applications. This paper presents the development of an affine invariant feature descriptor for low resource applications such as UAV and UGV that are equipped with an embedded system with a small microprocessor, a field programmable gate array (FPGA), or a smart phone device. UAV and UGV have proven suitable for many promising applications such as unknown environment exploration, search and rescue operations. These applications required on board image processing for obstacle detection, avoidance and navigation. All these real-time vision applications require a camera to grab images and match features using a feature descriptor. A good feature descriptor will uniquely describe a feature point thus allowing it to be correctly identified and matched with its corresponding feature point in another image. A few feature description algorithms are available for a resource limited system. They either require too much of the device's resource or too much simplification on the algorithm, which results in reduction in performance. This research is aimed at meeting the needs of these systems without sacrificing accuracy. This paper introduces a new feature descriptor called PRObabilistic model (PRO) for UGV navigation applications. It is a compact and efficient binary descriptor that is hardware-friendly and easy for implementation.
机译:在过去的几年中,对特征描述符的开发进行了大量研究。它们中的大多数不强调实时应用。本文介绍了仿射不变特征描述符的开发,该仿射不变特征描述符针对诸如无人机和UGV的低资源应用,这些应用配备了带有小型微处理器,现场可编程门阵列(FPGA)或智能电话设备的嵌入式系统。事实证明,无人机和无人飞行器适用于许多有前途的应用,例如未知环境探索,搜索和营救行动。这些应用需要车载图像处理来进行障碍物检测,避让和导航。所有这些实时视觉应用程序都需要照相机来捕获图像并使用特征描述符匹配特征。一个好的特征描述符将唯一地描述一个特征点,从而使它能够被正确地识别并与另一个图像中的相应特征点匹配。一些功能描述算法可用于资源受限的系统。它们要么占用了过多的设备资源,要么过于简化了算法,从而导致性能降低。这项研究旨在在不牺牲精度的情况下满足这些系统的需求。本文介绍了一种用于UGV导航应用的称为PRObabilistic模型(PRO)的新特征描述符。它是一个紧凑高效的二进制描述符,对硬件友好且易于实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号