首页> 外文会议>Intelligent Robots and Computer Vision XI: Biological, Neural Net, and 3-D Methods >Application of a real neural collision avoidance system based on the locust to AGV navigation
【24h】

Application of a real neural collision avoidance system based on the locust to AGV navigation

机译:基于蝗虫的真实神经防撞系统在AGV导航中的应用

获取原文
获取原文并翻译 | 示例

摘要

Abstract: erb aereal performance of flying insects isachieved with comparatively simple neural machinery.Insects react rapidly to changing visual images. Theabilities of insects to perform these computations inreal time has already led to a successful prototypeautonomous guided vehicle with a sensor and controlstructure modelled on the fly eye. Increasingly invisual neuroscience it is possible to isolate thecritical image cues used by identified neurones toachieve a selective response to a feature or group offeatures within the changing visual image. In thispaper we describe a biological neural network based onthe input organization of such an identified motiondetecting neurone, which responds selectively to theimages of an object approaching on a collision coursewith the animal. We compare the response of theartificial neural network with the biological neuralnetwork in the same colliding stimulus. This approachled to a series of testable predictions about theorganization of the biological neural network.!14
机译:摘要:相对简单的神经机制可以实现飞行昆虫的erb aereal性能。昆虫对变化的视觉图像做出快速反应。昆虫实时执行这些计算的能力已经导致成功的原型自动制导车辆具有在蝇眼上建模的传感器和控制结构。越来越不可视的神经科学有可能隔离已识别的神经元使用的关键图像线索,以实现对变化的可视图像中的一个特征或一组特征的选择性响应。在本文中,我们基于这种识别的运动检测神经元的输入组织描述了一种生物神经网络,该神经网络对与动物碰撞过程中接近的物体的图像进行选择性响应。我们在相同的碰撞刺激下比较了人工神经网络和生物神经网络的响应。这导致了有关生物神经网络组织的一系列可检验的预测。14

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号