首页> 外文会议>Intelligent Robots and Computer Vision X: Neural, Biological, and 3-D Methods >Toward a pyramidal neural network system for stereo fusion
【24h】

Toward a pyramidal neural network system for stereo fusion

机译:面向金字塔神经网络系统进行立体融合

获取原文
获取原文并翻译 | 示例

摘要

Abstract: A goal of computer vision is the construction of scene descriptions based on information extracted from one or more 2-D images. Stereo is one of the strategies used to recover 3-D information from two images. Intensity edges in the images correspond mostly to characteristic features in the 3-D scene and the stereo module attempt to match corresponding features in the two images. Edge detection makes explicit important information about the two-dimensional image but is scale-dependent: edges are visible only over a range of scales. One needs multiple scale analysis of the input image in order to have a complete description of the edges. We propose a compact pyramidal architecture for image representation at multiple spatial scales. A simple Processing Element (PE) is allocated at each pixel location at each level of the pyramid. A dense network of weighted links between each PE and PEs underneath is programmed to generate the levels of the pyramid. Lateral weighted links within a level compute edge localization and intensity gradient. Feedback between successive levels is used to reinforce and refine the position of true edges. A fusion channel matches the two edge channels to output a disparity map of the observed scene.!16
机译:摘要:计算机视觉的目标是基于从一个或多个2-D图像中提取的信息来构建场景描述。立体声是用于从两个图像恢复3-D信息的策略之一。图像中的强度边缘主要对应于3-D场景中的特征,并且立体声模块尝试匹配两个图像中的相应特征。边缘检测可提供有关二维图像的重要信息,但是它与比例有关:边缘仅在一定范围内可见。为了对边缘进行完整的描述,需要对输入图像进行多尺度分析。我们提出了一种紧凑的金字塔结构,用于在多个空间尺度上进行图像表示。在金字塔的每个级别的每个像素位置分配一个简单的处理元素(PE)。每个PE与下面的PE之间的加权链接的密集网络被编程为生成金字塔的级别。级别内的横向加权链接计算边缘定位和强度梯度。连续级别之间的反馈用于增强和完善真实边缘的位置。融合通道与两个边缘通道匹配,以输出观察到的场景的视差图。!16

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号