首页> 外文会议>Intelligent Robots and Computer Vision X: Neural, Biological, and 3-D Methods >Early perception and structural identity: neural implementation
【24h】

Early perception and structural identity: neural implementation

机译:早期感知和结构认同:神经实施

获取原文
获取原文并翻译 | 示例

摘要

Abstract: It is suggested that there exists a minimal set of rules for the perceptual composition of the unending variety of spatio-temporal patterns in our perceptual world. Driven by perceptual discernment of 'sudden change' and 'unexpectedness', these rules specify conditions (such as co-linearity and virtual continuation) for perceptual grouping and for recursive compositions of perceptual 'modalities' and 'signatures'. Beginning with a smallset of primitive perceptual elements, selected contextually at some relevant level of abstraction, perceptual compositions can graduate to an unlimited variety of spatiotemporal signatures, scenes and activities. Local discernible elements, often perceptually ambiguous by themselves, may be integrated into spatiotemporal compositions, which generate unambiguous perceptual separations between 'figure' and 'ground'. The definition of computational algorithms for the effective instantiation of the rules of perceptual grouping remains a principal problem. In this paper we present our approach for solving the problem of perceptual recognition within the confines of one-D variational profiles. More specifically, concerning 'early' (pre-attentive) recognition, we define the 'structural identity of a k-norm, $kappa $epsilon $Kappa@,' - SkID - as a tool for discerning and locating the instantiation of spatiotemporal objects or events. The SkID profile also serves a s a reference coordinate framework for the 'perceptual focusing of attention' and the eventual assessment of resemblance. Neural network implementations of pre-attentive and attentive recognition are also discussed briefly. Our principles are exemplified by application to one-D perceptual profiles, which allows simplicity of definitions and of the rules of perceptual composition.!8
机译:摘要:建议在我们的感知世界中,对于时空模式无休止变化的感知组成存在一套最小的规则。在“突然变化”和“意外”的感知识别的驱动下,这些规则为感知分组以及感知“模态”和“签名”的递归组合指定了条件(例如共线性和虚拟连续性)。从一小部分原始的感知元素开始,在某种相关的抽象水平上根据上下文进行选择,感知构图可以逐渐发展为各种时空标志,场景和活动。本地可辨别的元素(通常本身在感知上是模棱两可的)可以整合到时空组合中,从而在“图”和“底”之间产生明确的感知分离。有效例示感知分组规则的计算算法的定义仍然是一个主要问题。在本文中,我们介绍了我们解决一维变化曲线范围内的感知识别问题的方法。更具体地说,关于“早期”(注意力集中)识别,我们定义“ k范数的结构标识,$ kappa $ epsilon $ Kappa @”(SkID),作为识别和定位时空对象实例化的工具或事件。 SkID配置文件还为“注意力的注意力集中”和最终的相似性评估提供了一个参考坐标框架。还简要讨论了前注意和注意识别的神经网络实现。我们的原理通过应用于一维感知轮廓来举例说明,这使定义和感知组成规则变得简单!8

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号