【24h】

Handwritten digit recognition using neural networks

机译:使用神经网络的手写数字识别

获取原文
获取原文并翻译 | 示例

摘要

Abstract: Character and handwriting recognition is one of the most difficult problems of pattern recognition and artificial intelligence. Unlike the machine generated character, which is uniform throughout a document and often uniform between machines, each human being has a unique style of writing characters. With the infinite number of ways to record a character, it is a wonder that a person can understand his own script, let alone the script of another. Training a computer to recognize human-produced characters is a tremendous task in which researchers are just beginning to achieve some success. Primarily these methods rely on the use of algorithms to determine the similarities of two characters. Neural networks are an alternative technique now being explored. Four separate methods will be discussed in this paper. The first involves normalization, skeletonization, and feature extraction of a handwritten digit before application to a neural network for classification. The second simply applies a normalized digit to the neural net's input, and the network performs a 2-dimensional convolution on it in order to classify the digit. The third method involves a hierarchical network. The final technique incorporates time information into the system while using simple preprocessing and a small number of parameters. Their advantages and disadvantages are compared and discussed.!11
机译:摘要:字符和手写识别是模式识别和人工智能中最困难的问题之一。与机器生成的字符(在整个文档中是统一的,并且在机器之间通常是统一的)不同,每个人都有独特的书写字符样式。通过无数种记录角色的方式,一个人可以理解他自己的剧本,更不用说另一个人的剧本了。训练计算机以识别人类产生的角色是一项艰巨的任务,研究人员刚刚开始取得一些成功。这些方法主要依靠算法的使用来确定两个字符的相似性。神经网络是一种正在探索的替代技术。本文将讨论四种单独的方法。首先涉及在应用到神经网络进行分类之前对手写数字进行规范化,骨架化和特征提取。第二种方法只是将归一化的数字应用于神经网络的输入,然后网络对其进行二维卷积以对数字进行分类。第三种方法涉及分层网络。最终的技术将时间信息合并到系统中,同时使用简单的预处理和少量参数。比较并讨论了它们的优缺点。!11

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号