【24h】

Neural-network-based motion stereo methods

机译:基于神经网络的运动立体方法

获取原文
获取原文并翻译 | 示例

摘要

Abstract: This paper presents neural network based lateral and longitudinal motion stereo methods. Lateral motion stereo infers depth information from a lateral motion. Existing lateral motion stereo algorithms use either a Kalman filter or recursive least square algorithm to update the disparity values. Due to the unmeasurable estimation error, the estimated disparity values at each recursion are unreliable, yielding a noisy disparity field. Instead of updating the disparity values, we recursively update the bias inputs of the network. The disparity field is then computed by using a neural network. Since the recursive algorithm implements the matching algorithm only once, and the bias input updating scheme can be accomplished in real time, a vision system employing such an algorithm is feasible. For the purpose of handling batch data, we have also designed a batch algorithm. The batch algorithm integrates information from all images by embedding them into the bias inputs of the network. Then a static matching procedure is used to compute the disparity values. Longitudinal motion stereo infers depth information from a forward or backward motion. Existing longitudinal stereo algorithms have some problems associated with the location of the focus of expansion (FOE), and with the camera and surface orientations. Instead, our approach allows the camera to move along its optical axis forward or backward, requires no information on the FOE, and makes no assumption about the object surface. The algorithm uses a Gabor correlation operator to extract image features and employs the neural network to compute the disparity field based on the Gabor features. It produces multiple dense disparity fields and recovers the depth map very efficiently.!9
机译:摘要:本文提出了基于神经网络的横向和纵向运动立体方法。横向运动立体声从横向运动推断深度信息。现有的横向运动立体算法使用卡尔曼滤波器或递归最小二乘算法来更新视差值。由于无法测量的估计误差,每次递归时的估计视差值都不可靠,从而产生了嘈杂的视差场。代替更新视差值,我们递归地更新网络的偏置输入。然后通过使用神经网络来计算视差场。由于递归算法仅实现一次匹配算法,并且偏置输入更新方案可以实时完成,因此采用这种算法的视觉系统是可行的。为了处理批处理数据,我们还设计了一个批处理算法。批处理算法通过将所有图像的信息嵌入到网络的偏置输入中来对其进行整合。然后,使用静态匹配过程来计算视差值。纵向运动立体声从向前或向后运动推断深度信息。现有的纵向立体算法存在一些与扩展焦点(FOE)的位置以及相机和表面方向有关的问题。取而代之的是,我们的方法允许摄像机沿其光轴向前或向后移动,不需要有关FOE的信息,也无需对物体表面进行任何假设。该算法使用Gabor相关算子提取图像特征,并使用神经网络基于Gabor特征计算视差场。它会产生多个密集的视差场并非常有效地恢复深度图!9

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号