首页> 外文会议>Intelligent data engineering and automated learning-IDEAL 2011 >Decoding Phase-Based Information from Steady-State Visual Evoked Potentials with Use of Complex-Valued Neural Network
【24h】

Decoding Phase-Based Information from Steady-State Visual Evoked Potentials with Use of Complex-Valued Neural Network

机译:使用复数值神经网络从稳态视觉诱发电位中解码基于相位的信息

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we report on the decoding of phase-based information from steady-state visual evoked potential (SSVEP) recordings by means of a multilayer feedforward neural network based on multivalued neurons. Networks of this kind have inputs and outputs which are well fitted for the considered task. The dependency of the decoding accuracy w.r.t. the number of targets and the decoding window size is discussed. Comparing existing phase-based SSVEP decoding methods with the proposed approach, we show that the latter performs better for the larger amount of target classes and the sufficient size of decoding window. The necessity of the proper frequency selection for each subject is discussed.
机译:在本文中,我们报告了通过基于多值神经元的多层前馈神经网络,从稳态视觉诱发电位(SSVEP)记录中解码基于相位的信息。这种网络的输入和输出非常适合所考虑的任务。解码精度w.r.t.讨论了目标数目和解码窗口大小。将现有的基于阶段的SSVEP解码方法与所提出的方法进行比较,我们表明,后者在较大数量的目标类别和足够大的解码窗口大小下表现更好。讨论了为每个主题选择正确的频率的必要性。

著录项

  • 来源
  • 会议地点 Norwich(GB);Norwich(GB)
  • 作者单位

    Laboratory for Neuro- and Psychofysiology, K.U.Leuven, Herestraat 49, bus 1021, 3000 Leuven, Belgium;

    Laboratory for Neuro- and Psychofysiology, K.U.Leuven, Herestraat 49, bus 1021, 3000 Leuven, Belgium;

    Laboratory for Neuro- and Psychofysiology, K.U.Leuven, Herestraat 49, bus 1021, 3000 Leuven, Belgium;

    Laboratory for Neuro- and Psychofysiology, K.U.Leuven, Herestraat 49, bus 1021, 3000 Leuven, Belgium;

    Laboratory for Neuro- and Psychofysiology, K.U.Leuven, Herestraat 49, bus 1021, 3000 Leuven, Belgium;

    Laboratory for Neuro- and Psychofysiology, K.U.Leuven, Herestraat 49, bus 1021, 3000 Leuven, Belgium;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 计算机网络;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号