首页> 外文OA文献 >Decoding Phase-based Information from SSVEP Recordings with Use of Complex-Valued Neural Network
【2h】

Decoding Phase-based Information from SSVEP Recordings with Use of Complex-Valued Neural Network

机译:使用复值神经网络从SSVEP记录中解码基于阶段的信息

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we report on decoding of phase-based information from steady-state visual evoked potential (SSVEP) recordings with use of complex-valued neural network. The networks of this kind has inputs and output well fitted for the considered task. The dependency of the decoding accuracy from the number of targets and the decoding window size is discussed. Comparing the existing phase-based SSVEP decoding methods with the proposed approach, we show that the latter performs better for bigger amount of target classes and sufficient length of time window used in the decoding procedure. The necessity of the proper frequency selection for each subject is discussed.
机译:在本文中,我们报告了使用复数值神经网络从稳态视觉诱发电位(SSVEP)记录中解码基于相位的信息的过程。这种网络的输入和输出非常适合所考虑的任务。讨论了解码精度与目标数量和解码窗口大小的关系。将现有的基于阶段的SSVEP解码方法与所提出的方法进行比较,我们表明,后者在较大数量的目标类别和足够长的解码过程中使用的时间窗方面表现更好。讨论了为每个主题选择正确的频率的必要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号