首页> 外文会议>Intelligent data engineering and automated learning-IDEAL 2009 >Typed Linear Chain Conditional Random Fields and Their Application to Intrusion Detection
【24h】

Typed Linear Chain Conditional Random Fields and Their Application to Intrusion Detection

机译:型线性链条件随机场及其在入侵检测中的应用

获取原文
获取原文并翻译 | 示例

摘要

Intrusion detection in computer networks faces the problem of a large number of both false alarms and unrecognized attacks. To improve the precision of detection, various machine learning techniques have been proposed. However, one critical issue is that the amount of reference data that contains serious intrusions is very sparse. In this paper we present an inference process with linear chain conditional random fields that aims to solve this problem by using domain knowledge about the alerts of different intrusion sensors represented in an ontology.
机译:计算机网络中的入侵检测面临着大量的误报和无法识别的攻击的问题。为了提高检测的精度,已经提出了各种机器学习技术。但是,一个关键问题是包含严重入侵的参考数据非常稀少。在本文中,我们提出了一种带有线性链条件随机场的推理过程,旨在通过使用关于本体中表示的不同入侵传感器的警报的领域知识来解决此问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号