首页> 外文期刊>Dependable and Secure Computing, IEEE Transactions on >Layered Approach Using Conditional Random Fields for Intrusion Detection
【24h】

Layered Approach Using Conditional Random Fields for Intrusion Detection

机译:使用条件随机场进行入侵检测的分层方法

获取原文
获取原文并翻译 | 示例

摘要

Intrusion detection faces a number of challenges; an intrusion detection system must reliably detect malicious activities in a network and must perform efficiently to cope with the large amount of network traffic. In this paper, we address these two issues of Accuracy and Efficiency using Conditional Random Fields and Layered Approach. We demonstrate that high attack detection accuracy can be achieved by using Conditional Random Fields and high efficiency by implementing the Layered Approach. Experimental results on the benchmark KDD '99 intrusion data set show that our proposed system based on Layered Conditional Random Fields outperforms other well-known methods such as the decision trees and the naive Bayes. The improvement in attack detection accuracy is very high, particularly, for the U2R attacks (34.8 percent improvement) and the R2L attacks (34.5 percent improvement). Statistical Tests also demonstrate higher confidence in detection accuracy for our method. Finally, we show that our system is robust and is able to handle noisy data without compromising performance.
机译:入侵检测面临许多挑战。入侵检测系统必须可靠地检测网络中的恶意活动,并且必须高效执行以应对大量网络流量。在本文中,我们使用条件随机场和分层方法解决了精度和效率这两个问题。我们证明,通过使用条件随机字段可以实现较高的攻击检测精度,并且通过实施分层方法可以实现较高的效率。在基准KDD '99入侵数据集上的实验结果表明,我们提出的基于分层条件随机场的系统优于其他众所周知的方法,例如决策树和朴素的贝叶斯。攻击检测准确性的提高非常高,特别是对于U2R攻击(提高了34.8%)和R2L攻击(提高了34.5%)。统计测试还证明了我们方法的检测准确度更高。最后,我们证明了我们的系统功能强大,能够在不影响性能的情况下处理嘈杂的数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号