首页> 外文会议>Intelligent Data Engineering and Automated Learning - IDEAL 2008 >Cluster Analysis of Land-Cover Images Using Automatically Segmented SOMs with Textural Information
【24h】

Cluster Analysis of Land-Cover Images Using Automatically Segmented SOMs with Textural Information

机译:使用具有纹理信息的自动分段SOM对土地覆盖图像进行聚类分析

获取原文
获取原文并翻译 | 示例

摘要

This work attempts to take advantage of the properties of Kohonen's Self-Organizing Map (SOM) to perform the cluster analysis of remotely sensed images. A clustering method which automatically finds the number of clusters as well as the partitioning of the image data is proposed. The data clustering is made using the SOM. Different partitions of the trained SOM are obtained from different segmentations of the U-matrix (a neuron-distance image) that are generated by means of mathematical morphology techniques. The different partitions of the trained SOM produce different partitions for the image data which are evaluated by cluster validity indexes. Seeking to guarantee even greater efficiency in the image categorization process, the proposed method extracts information from the image by means of pixel windows, in order to incorporate textural information. The experimental results show an application example of the proposed method on a TM-Landsat image.
机译:这项工作试图利用Kohonen的自组织图(SOM)的属性来执行遥感图像的聚类分析。提出了一种自动寻找聚类数量以及图像数据划分的聚类方法。使用SOM进行数据聚类。从通过数学形态学技术生成的U矩阵(神经元距离图像)的不同分割中获得训练的SOM的不同分区。训练过的SOM的不同分区为图像数据生成不同的分区,这些分区由聚类有效性指标评估。为了保证图像分类过程中更高的效率,该方法通过像素窗口从图像中提取信息,以结合纹理信息。实验结果表明了该方法在TM-Landsat图像上的应用实例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号