首页> 外文会议>Intelligent Data Engineering and Automated Learning - IDEAL 2008 >Guaranteed Network Traffic Demand Prediction Using FARIMA Models
【24h】

Guaranteed Network Traffic Demand Prediction Using FARIMA Models

机译:使用FARIMA模型的有保证的网络流量需求预测

获取原文
获取原文并翻译 | 示例

摘要

The Fractional Auto-Regressive Integrated Moving Average (FARIMA) model is often used to model and predict network traffic demand which exhibits both long-range and short-range dependence. However, finding the best model to fit a given set of observations and achieving good performance is still an open problem. We present a strategy, namely Aggregating Algorithm, which uses several FARIMA models and then aggregates their outputs to achieve a guaranteed (in a sense) performance. Our feasibility study experiments on the public datasets demonstrate that using the Aggregating Algorithm with FARIMA models is a useful tool in predicting network traffic demand.
机译:分数自回归综合移动平均(FARIMA)模型通常用于对网络流量需求进行建模和预测,该需求表现出长期和短期的依赖性。但是,找到适合给定观察结果的最佳模型并获得良好的性能仍然是一个悬而未决的问题。我们提出一种策略,即聚合算法,该策略使用多个FARIMA模型,然后对其输出进行聚合以实现有保证的(某种意义上)性能。我们在公共数据集上的可行性研究实验表明,将聚集算法与FARIMA模型结合使用是预测网络流量需求的有用工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号