首页> 外文会议>Intelligent Data Engineering and Automated Learing(IDEAL 2006); Lecture Notes in Computer Science; 4224 >ICA and Genetic Algorithms for Blind Signal and Image Deconvolution and Deblurring
【24h】

ICA and Genetic Algorithms for Blind Signal and Image Deconvolution and Deblurring

机译:ICA和遗传算法进行盲信号和图像反卷积和去模糊

获取原文
获取原文并翻译 | 示例

摘要

Signals and images often suffer from blurring or point spreading with unknown filter or point spread function. Most existing blind deconvolution and deblurring methods require good knowledge about both the signal and the filter and the performance depends on the amount of prior information regarding the blurring function and signal. Often an iterative procedure is required for estimating the blurring function such as the Richardson-Lucy method and is computational complex and expensive and sometime unstable. In this paper a blind signal deconvolution and deblurring method is proposed based on an ICA measure as well as a simple genetic algorithm. The method is simple and does not require any priori knowledge regarding the signal and the blurring function. Experimental results are presented and compared with some existing methods.
机译:信号和图像经常会因未知滤波器或点扩展功能而变得模糊或点扩展。大多数现有的盲去卷积和去模糊方法都需要对信号和滤波器都有很好的了解,而性能取决于有关模糊功能和信号的先验信息量。通常,需要一个迭代过程来估算模糊函数,例如Richardson-Lucy方法,并且计算复杂,昂贵且有时不稳定。本文提出了一种基于ICA度量的盲信号去卷积和去模糊方法,以及一种简单的遗传算法。该方法简单并且不需要关于信号和模糊功能的任何先验知识。提出了实验结果,并与一些现有方法进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号