首页> 外文会议>Integer programming and combinatoral optimization >Facility Location with Client Latencies: Linear Programming Based Techniques for Minimum Latency Problems
【24h】

Facility Location with Client Latencies: Linear Programming Based Techniques for Minimum Latency Problems

机译:带有客户延迟的设施定位:基于线性规划的最小延迟问题技术

获取原文
获取原文并翻译 | 示例

摘要

We introduce a problem that is a common generalization of the uncapacitated facility location and minimum latency (ML) problems, where facilities need to be opened to serve clients and also need to be sequentially activated before they can provide service. Formally, we are given a set F of n facilities with facility-opening costs f_i, a set V of m clients, connection costs C_(ij) specifying the cost of assigning a client j to a facility i, a root node r denoting the depot, and a time metric d on F∪{r}. Our goal is to open a subset F of facilities, find a path P starting at r and spanning F to activate the open facilities, and connect each client j to a facility φ(j) ∈ F, so as to minimize ∑_(i∈d) f_i + ∑_(i∈d)(c_(φ(j),j)+ t_j), where t_j is the time taken to reach φ (j) along path P. We call this the minimum latency uncapacitated facility location (MLUFL) problem. Our main result is an O(logn · max(logn,logm))-approximation for MLUFL. We also show that any improvement in this approximation guarantee, implies an improvement in the (current-best) approximation factor for group Steiner tree. We obtain constant approximations for two natural special cases of the problem: (a) related MLUFL (metric connection costs that are a scalar multiple of the time metric); (b) metric uniform MLUFL (metric connection costs, uniform time-metric). Our LP-based methods are versatile and easily adapted to yield approximation guarantees for MLUFL in various more general settings, such as (i) when the latency-cost of a client is a function of the delay faced by the facility to which it is connected; and (ii) the k-route version, where k vehicles are routed in parallel to activate the open facilities. Our LP-based understanding of MLUFL also offers some LP-based insights into ML, which we believe is a promising direction for obtaining improvements for ML.
机译:我们引入了一个问题,这是无能力的设施位置和最小等待时间(ML)问题的普遍概括,在这里,需要开放设施以服务于客户,并且还需要依次激活设施才能提供服务。正式地,我们得到n个设施的集合F,其中设施开放成本为f_i,v个集合为m个客户端,连接成本C_(ij)指定将客户端j分配给设施i的成本,根节点r表示仓库和F∪{r}上的时间度量d。我们的目标是打开设施的子集F,找到从r开始并跨越F的路径P以激活打开的设施,并将每个客户端j连接到设施φ(j)∈F,以使∑_(i ∈d)f_i + ∑_(i∈d)(c_(φ(j),j)+ t_j),其中t_j是沿路径P到达φ(j)所花费的时间。我们称其为最小延迟无能力能力位置(MLUFL)问题。我们的主要结果是MLUFL的O(logn·max(logn,logm))逼近。我们还表明,这种近似保证的任何改进都意味着对Steiner树的(当前最佳)近似因子的改进。我们为问题的两个自然特殊情况获得常数近似值:(a)相关的MLUFL(度量标准连接成本是时间度量标准的倍数); (b)公制统一MLUFL(公制连接成本,统一时间公制)。我们基于LP的方法是通用的,可以轻松地在各种更通用的设置下为MLUFL产生近似保证,例如(i)当客户端的等待时间成本是与其所连接的设施所面临的延迟的函数时; (ii)k路线版本,其中k辆车辆并行路线以激活开放设施。我们对MLUFL的基于LP的理解也为ML提供了一些基于LP的见解,我们认为这是获得ML改进的有希望的方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号