首页> 外文会议>Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XXVIII >Testing of next-generation nonlinear calibration based non-uniformity correction techniques using SWIR devices
【24h】

Testing of next-generation nonlinear calibration based non-uniformity correction techniques using SWIR devices

机译:使用SWIR设备测试基于下一代非线性校准的非均匀性校正技术

获取原文
获取原文并翻译 | 示例

摘要

A known problem with infrared imaging devices is their non-uniformity. This non-uniformity is the result of dark current, amplifier mismatch as well as the individual photo response of the detectors. To improve performance, non-uniformity correction (NUC) techniques are applied. Standard calibration techniques use linear, or piecewise linear models to approximate the non-uniform gain and offset characteristics as well as the nonlinear response. Piecewise linear models perform better than the one and two-point models, but in many cases require storing an unmanageable number of correction coefficients. Most nonlinear NUC algorithms use a second order polynomial to improve performance and allow for a minimal number of stored coefficients. However, advances in technology now make higher order polynomial NUC algorithms feasible. This study comprehensively tests higher order polynomial NUC algorithms targeted at short wave infrared (SWIR) imagers. Using data collected from actual SWIR cameras, the nonlinear techniques and corresponding performance metrics are compared with current linear methods including the standard one and two-point algorithms. Machine learning, including principal component analysis, is explored for identifying and replacing bad pixels. The data sets are analyzed and the impact of hardware implementation is discussed. Average floating point results show 30% less non-uniformity, in post-corrected data, when using a third order polynomial correction algorithm rather than a second order algorithm. To maximize overall performance, a trade off analysis on polynomial order and coefficient precision is performed. Comprehensive testing, across multiple data sets, provides next generation model validation and performance benchmarks for higher order polynomial NUC methods.
机译:红外成像设备的已知问题是它们的不均匀性。这种不均匀性是暗电流,放大器失配以及检测器的单个光响应的结果。为了提高性能,应用了非均匀性校正(NUC)技术。标准校准技术使用线性或分段线性模型来近似非均匀增益和失调特性以及非线性响应。分段线性模型的性能优于一点模型和两点模型,但是在许多情况下,它们需要存储难以管理的校正系数。大多数非线性NUC算法使用二阶多项式来提高性能,并允许存储系数的数量最少。但是,技术的进步使高阶多项式NUC算法变得可行。这项研究全面测试针对短波红外(SWIR)成像器的高阶多项式NUC算法。使用从实际SWIR摄像机收集的数据,将非线性技术和相应的性能指标与当前的线性方法(包括标准的一点和两点算法)进行比较。探索了机器学习,包括主成分分析,以识别和替换不良像素。分析了数据集并讨论了硬件实施的影响。当使用三阶多项式校正算法而不是二阶算法时,平均浮点结果显示后校正数据中的非均匀性降低了30%。为了最大化整体性能,需要对多项式阶次和系数精度进行权衡分析。跨多个数据集的综合测试为更高阶多项式NUC方法提供了下一代模型验证和性能基准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号