首页> 外文会议>Infrared imaging systems: Design, analysis, modeling, and testing XXI >Review of Bayer Pattern CFA Demosaicing with New Quality Assessment Algorithms
【24h】

Review of Bayer Pattern CFA Demosaicing with New Quality Assessment Algorithms

机译:拜耳模式CFA去马赛克的新质量评估算法综述

获取原文
获取原文并翻译 | 示例

摘要

Given the frequent lack of a reference image or ground truth when performance testing Bayer pattern color filter array (CFA) demosaicing algorithms, two new no-reference quality assessment algorithms are proposed. These new quality assessment algorithms give a relative comparison of two demosaicing algorithms by measuring the presence of two common artifacts in their output images. For this purpose, various demosaicing algorithms are reviewed, especially adaptive color plane, gradient based methods, and median filtering, with particular attention paid to the false color and edge blurring artifacts common to all demosaicing algorithms. Classic quality assessment methods which require a reference image, such as MSE, PSNR, and AE, are reviewed, their typical usage characterized, and their associated pitfalls identified. With this information in mind, the motivations for no-reference quality assessment are discussed. The new quality assessment algorithms are then designed for a relative comparison of two images demosaiced from the same CFA data by measuring the sharpness of the edges and determining the presence of false colors. Demosaicing algorithms described earlier are evaluated and ranked using these new algorithms. A large quantity of real images is given for review. These images are also used to justify those rankings suggested by the new quality assessment algorithms. This work provides a path forward for future research investigating possible relationships between CFA demosaicing and color image super-resolution.
机译:鉴于在性能测试拜耳模式彩色滤光片阵列(CFA)去马赛克算法时经常缺少参考图像或地面真相,提出了两种新的无参考质量评估算法。这些新的质量评估算法通过测量输出图像中两个常见伪像的存在,从而相对比较了两种去马赛克算法。为此,审查了各种去马赛克算法,特别是自适应彩色平面,基于梯度的方法和中值滤波,尤其要注意所有去马赛克算法共有的伪彩色和边缘模糊伪像。回顾了需要参考图像(例如MSE,PSNR和AE)的经典质量评估方法,对它们的典型用法进行了表征,并确定了相关的陷阱。考虑到这些信息,讨论了无参考质量评估的动机。然后,通过测量边缘的清晰度并确定假色的存在,将新的质量评估算法设计为相对比较从同一CFA数据中去马赛克的两个图像。使用这些新算法对先前描述的去马赛克算法进行评估和排名。给出了大量的真实图像供审查。这些图像还可以用来证明新质量评估算法建议的排名。这项工作为将来的研究提供了一条路径,以研究CFA去马赛克和彩色图像超分辨率之间的可能关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号