首页> 外文会议>Information retrieval technology >Using Key Sentence to Improve Sentiment Classification
【24h】

Using Key Sentence to Improve Sentiment Classification

机译:使用关键句改善情绪分类

获取原文
获取原文并翻译 | 示例

摘要

When predicting the polarity of a review, not all sentences are equally informative. In this paper, we divide a document into key sentence and trivial sentences. The key sentence expresses the author's overall view while trivial sentences describe the details. To take full advantage of the differences and complementarity between the two kinds of sentences, we incorporate them in supervised and semi-supervised learning respectively. In supervised sentiment classification, a classifier combination approach is adopted; in semi supervised sentiment classification, a co-training algorithm is proposed. Experiments carried out on eight domains show that our approach performs better than the baseline method and the key sentence extraction is effective.
机译:在预测评论的极性时,并非所有句子都具有同等的信息性。在本文中,我们将文档分为关键句子和琐碎句子。关键的句子表达了作者的整体观点,而琐碎的句子则描述了细节。为了充分利用两种句子之间的差异和互补性,我们分别将它们纳入监督学习和半监督学习中。在监督情感分类中,采用了分类器组合的方法。在半监督情感分类中,提出了一种协同训练算法。在八个领域进行的实验表明,我们的方法比基线方法表现更好,并且关键句提取是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号