首页> 中文期刊> 《计算机系统应用》 >基于FastText和关键句提取的中文长文本分类

基于FastText和关键句提取的中文长文本分类

     

摘要

FastText是一种准确高效的文本分类模型,但直接应用在中文长文本分类领域存在准确度不高的问题.针对该问题,提出一种融合TextRank关键子句提取和词频-逆文本频率(Term Frequency-Inverse Document Frequency,TF-IDF)的FastText中文长文本分类方法.该方法在FastText模型输入阶段使用TextRank算法提取文本的关键子句输入训练模型,同时采用TF-IDF提取文本的关键词作为特征补充,从而在减少训练语料的同时尽可能保留文本分类的关键特征.实验结果表明,此文本分类方法在数据集上准确率达到86.1%,比经典的FastText模型提高了约4%.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号