首页> 外文会议>Independent component analyses, wavelets, neural networks, biosystems, and nanoengineering IX >Anomaly recovery from compressed spectral imagery via low-rank matrix minimization
【24h】

Anomaly recovery from compressed spectral imagery via low-rank matrix minimization

机译:通过低秩矩阵最小化从压缩光谱图像中恢复异常

获取原文
获取原文并翻译 | 示例

摘要

This work describes a methodology for the recovery of anomalies and their spectral signatures from compressively sensed multi-spectral video using Principal Component Pursuit (PCP). In video surveillance, approaches based on PCP allow the anomaly detection in a cluttered background by modeling a sequence of video frames as a large data matrix composed by a low-rank matrix plus a sparse matrix. The low-rank matrix corresponds to the stationary background and the sparse matrix captures the anomalies in the foreground. The compressive spectral video frames are attained by the use of a Coded Aperture Snapshot Spectral Imaging (CASSI) system. The CASSI system allows the compressive measurement of spectrally rich video content by simply capturing a sequence of 2D coded aperture video frames. This paper describes improved procedures for the reconstruction of the video anomalies and their spectra based on the 2-D, aperture-coded, isolated anomalies.
机译:这项工作描述了使用主成分追踪(PCP)从压缩感测的多光谱视频中恢复异常及其光谱特征的方法。在视频监视中,基于PCP的方法通过将视频帧序列建模为由低秩矩阵和稀疏矩阵组成的大型数据矩阵,从而在杂乱的背景中进行异常检测。低秩矩阵对应于固定背景,而稀疏矩阵捕获前景中的异常。通过使用编码孔径快照光谱成像(CASSI)系统可获得压缩光谱视频帧。通过简单地捕获2D编码孔径视频帧序列,CASSI系统就可以对频谱丰富的视频内容进行压缩测量。本文介绍了基于二维,孔径编码,隔离异常的视频异常及其频谱的重建方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号