首页> 外文会议>Independent component analyses, compressive sampling, wavelets, neural net, biosystems, and nanoengineering XII >Low Discrepancy sampling of parameter surface using adaptive Space-Filling Curves (SFC)
【24h】

Low Discrepancy sampling of parameter surface using adaptive Space-Filling Curves (SFC)

机译:使用自适应空间填充曲线(SFC)对参数表面进行低差异采样

获取原文
获取原文并翻译 | 示例

摘要

Space-Filling Curves (SFCs) are encountered in different fields of engineering and computer science, especially where it is important to linearize multidimensional data for effective and robust interpretation of the information. Examples of multidimensional data are matrices, images, tables, computational grids, and Electroencephalography (EEG) sensor data resulting from the discretization of partial differential equations (PDEs). Data operations like matrix multiplications, load/store operations and updating and partitioning of data sets can be simplified when we choose an efficient way of going through the data. In many applications SFCs present just this optimal manner of mapping multidimensional data onto a one dimensional sequence. In this report, we begin with an example of a space-filling curve and demonstrate how it can be used to find the most similarity using Fast Fourier transform (FFT) through a set of points. Next we give a general introduction to space-filling curves and discuss properties of them. Finally, we consider a discrete version of space-filling curves and present experimental results on discrete space-filling curves optimized for special tasks.
机译:工程和计算机科学的不同领域都遇到了空间填充曲线(SFC),尤其是在对多维数据进行线性化以有效且可靠地解释该信息时,这一点尤其重要。多维数据的示例是由偏微分方程(PDE)离散化而得到的矩阵,图像,表格,计算网格和脑电图(EEG)传感器数据。当我们选择一种高效的数据处理方式时,可以简化诸如矩阵乘法,加载/存储操作以及数据集更新和分区之类的数据操作。在许多应用中,SFC只是将多维数据映射到一维序列的最佳方式。在本报告中,我们以空间填充曲线的示例开始,并演示如何通过快速傅立叶变换(FFT)通过一组点将其用于找到最相似的地方。接下来,我们对空间填充曲线进行一般性介绍,并讨论它们的属性。最后,我们考虑空间填充曲线的离散形式,并针对优化用于特殊任务的离散空间填充曲线给出实验结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号