首页> 外文会议>Image and signal processing for remote sensing XXII >Downscaling soil moisture using multi-source data in China
【24h】

Downscaling soil moisture using multi-source data in China

机译:利用中国的多源数据降低土壤湿度

获取原文
获取原文并翻译 | 示例

摘要

Soil moisture plays an important role in the water cycle within the surface ecosystem and it is the basic condition for the growth and development of plants. Currently, the spatial resolution of most soil moisture data from remote sensing ranges from ten to several tens of kilometres whilst those observed in situ and simulated for watershed hydrology, ecology, agriculture, weather and drought research are generally less than 1 kilometre. Therefore, the existing coarse resolution remotely sensed soil moisture data needs to be down-scaled. In this paper, a universal soil moisture downscaling model through stepwise regression with moving window suitable for large areas and multi temporal has been established. Datasets comprise land surface, brightness temperature, precipitation, soil and topographic parameters from high resolution data, and active/passive microwave remotely sensed soil moisture data from Essential Climate Variables (ECVSM) with 25 km spatial resolution were used. With this model, a total of 288 soil moisture maps of 1 km resolution from the first ten-day of January 2003 to the last tenth-day of December 2010 were derived. The in situ observations were used to validate the down-scaled ECVSM for different land cover and land use types and seasons. In addition, various errors comparative analysis was also carried out for the down-scaled ECVSM and original one. In general, the down-scaled soil moisture for different land cover and land use types is consistent with the in situ observations. The accuracy is relatively high in autumn and winter. The validation results show that downscaled soil moisture can be improved not only on spatial resolution, but also on estimation accuracy.
机译:土壤水分在地表生态系统内的水循环中起着重要作用,是植物生长发育的基本条件。目前,大多数来自遥感的土壤水分数据的空间分辨率范围从十公里到几十公里,而在流域水文,生态,农业,天气和干旱研究中进行实地观测和模拟的数据通常小于1公里。因此,现有的粗分辨率遥感土壤湿度数据需要缩小比例。本文建立了适用于大面积多时相的移动窗口逐步回归的土壤水分降尺度通用模型。数据集包括来自高分辨率数据的土地表面,亮度温度,降水,土壤和地形参数,并使用了具有25 km空间分辨率的基本气候变量(ECVSM)的主动/被动微波遥感土壤湿度数据。使用该模型,从2003年1月的第一个十天到2010年12月的最后一个十天,总共获得了288个分辨率为1 km的土壤湿度图。原位观测被用于验证不同土地覆被,土地利用类型和季节的ECVSM缩减规模。此外,还针对缩小的ECVSM和原始ECVSM进行了各种误差比较分析。一般而言,不同土地覆盖和土地利用类型的土壤水分按比例缩小与实地观测结果一致。在秋季和冬季,精度较高。验证结果表明,降低尺度的土壤水分不仅可以改善空间分辨率,而且可以改善估计精度。

著录项

  • 来源
    《Image and signal processing for remote sensing XXII》|2016年|100041z.1-100041z.14|共14页
  • 会议地点 Edinburgh(GB)
  • 作者单位

    School of Earth Sciences and Engineering, Hohai University, Jiangsu, Nanjing, 210098, P. R. China;

    School of Geographic and Oceanographic Sciences, Nanjing University, Jiangsu, Nanjing 210093, P. R. China;

    School of Earth Sciences and Engineering, Hohai University, Jiangsu, Nanjing, 210098, P. R. China;

    Department of Geography and Environment, University of Southampton, SO17 1BJ, UK;

    School of Earth Sciences and Engineering, Hohai University, Jiangsu, Nanjing, 210098, P. R. China;

    School of Earth Sciences and Engineering, Hohai University, Jiangsu, Nanjing, 210098, P. R. China;

    School of Earth Sciences and Engineering, Hohai University, Jiangsu, Nanjing, 210098, P. R. China;

    School of Earth Sciences and Engineering, Hohai University, Jiangsu, Nanjing, 210098, P. R. China;

    School of Earth Sciences and Engineering, Hohai University, Jiangsu, Nanjing, 210098, P. R. China;

    Department of Geomatic Engineering, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana;

    School of Earth Sciences and Engineering, Hohai University, Jiangsu, Nanjing, 210098, P. R. China;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Microwave remote sensing; soil moisture; ECVSM; multi-source data; downscaling; accuracy verification; China;

    机译:微波遥感;土壤湿度; ECVSM;多源数据;缩小规模;准确性验证;中国;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号