首页> 外文会议>Image and signal processing for remote sensing XX >Cloud masking of multitemporal remote sensing images
【24h】

Cloud masking of multitemporal remote sensing images

机译:多时相遥感影像的云遮罩

获取原文
获取原文并翻译 | 示例

摘要

An automatic cloud masking is one of the first required processing steps since the operational use of satellite image time series might be hampered by undetected clouds. The high temporal revisit of current and forthcoming missions allows us to consider cloud screening as an unsupervised change detection problem in the temporal domain. Therefore, we propose a cloud screening method based on detecting abrupt changes in the temporal domain. The main assumption is that image time series follow smooth variations over land (background) and abrupt changes in certain spectral and spatial features will be mainly due to the presence of clouds. The method estimates the background and common surface changes using the full information in the time series. In particular, we propose linear and nonlinear least squares regression algorithms that minimize both the prediction and estimation error simultaneously. Then, significant differences in the image of interest with respect to the estimated background are identified as clouds. The use of kernel methods allows the generalization of the algorithm to account for higher-order (nonlinear) feature relations. After cloud detection, cloud-free time series at high spatial resolution can be used to obtain a better monitoring of the land cover dynamics and to generate more elaborated products. The proposed method is tested in a dataset with 5-day revisit time series from SPOT-4 at high resolution and Landsat-8 time series.
机译:自动云遮罩是第一个必需的处理步骤,因为卫星图像时间序列的操作使用可能会受到未检测到的云的阻碍。当前和即将执行的任务在时间上的高度重访使我们可以将云筛选视为在时间域中无监督的变更检测问题。因此,我们提出了一种基于检测时域突变的云筛选方法。主要假设是图像时间序列会随陆地(背景)的平滑变化而变化,某些光谱和空间特征的突然变化将主要是由于云的存在。该方法使用时间序列中的全部信息来估计背景和常见表面变化。特别是,我们提出了线性和非线性最小二乘回归算法,可将预测误差和估计误差同时最小化。然后,将感兴趣图像相对于估计背景的显着差异识别为云。内核方法的使用允许算法的一般化以解决高阶(非线性)特征关系。在进行云探测之后,可以使用具有高空间分辨率的无云时间序列来更好地监视土地覆盖动态并生成更精细的产品。在具有SPOT-4高分辨率的5天重访时间序列和Landsat-8时间序列的数据集中测试了所提出的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号