首页> 外文会议>Image Sensing Technologies: Materials, Devices, Systems, and Applications II >Illumination Modelling of a Mobile Device Environment for Effective use in Driving Mobile Apps
【24h】

Illumination Modelling of a Mobile Device Environment for Effective use in Driving Mobile Apps

机译:有效驱动移动应用程序使用的移动设备环境的照明建模

获取原文
获取原文并翻译 | 示例

摘要

The present generation of Ambient Light Sensors (ALS) of a mobile handheld device suffer from two practical shortcomings. The ALSs are narrow angle, i.e. they respond effectively only within a narrow angle of operation and there is a latency of operation. As a result mobile applications that operate based on the ALS readings could perform sub-optimally especially when operated in environments with non-uniform illumination. The applications will either adopt with unacceptable levels of latency or/and may demonstrate a discrete nature of operation. In this paper we propose a framework to predict the ambient illumination of an environment in which a mobile device is present. The predictions are based on an illumination model that is developed based on a small number of readings taken during an application calibration stage. We use a machine learning based approach in developing the models. Five different regression models were developed, implemented and compared based on Polynomial, Gaussian, Sum of Sine, Fourier and Smoothing Spline functions. Approaches to remove noisy data, missing values and outliers were used prior to the modelling stage to remove their negative effects on modelling. The prediction accuracy for all models were found to be above 0.99 when measured using R-Squared test with the best performance being from Smoothing Spline. In this paper we will discuss mathematical complexity of each model and investigate how to make compromises in finding the best model.
机译:移动手持设备的当前环境光传感器(ALS)具有两个实际缺点。 ALS是窄角度的,即,它们仅在狭窄的操作角度内有效响应,并且存在操作等待时间。结果,基于ALS读数运行的移动应用程序可能会表现欠佳,尤其是在照明不均匀的环境中运行时。这些应用程序要么采用不可接受的延迟级别,要么//并且可能表现出离散的操作性质。在本文中,我们提出了一个框架来预测存在移动设备的环境的环境照度。这些预测基于照明模型,该照明模型是基于在应用程序校准阶段获取的少量读数而开发的。我们在开发模型时使用了基于机器学习的方法。基于多项式,高斯,正弦和,傅立叶和平滑样条函数,开发,实施和比较了五个不同的回归模型。在建模阶段之前,使用了去除噪声数据,缺失值和离群值的方法,以消除它们对建模的负面影响。当使用R-Squared测试进行测量时,发现所有模型的预测精度均高于0.99,其中最佳性能来自Smoothing Spline。在本文中,我们将讨论每个模型的数学复杂性,并研究如何在寻找最佳模型时做出让步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号