首页> 外文会议>Image Processing pt.3 >Consistent interactive segmentation of pulmonary ground glass nodules identified in CT studies
【24h】

Consistent interactive segmentation of pulmonary ground glass nodules identified in CT studies

机译:CT研究中确定的肺毛玻璃结节的一致交互式分割

获取原文

摘要

Ground glass nodules (GGNs) have proved especially problematic in lung cancer diagnosis, as despite frequently being malignant they characteristically have extremely slow rates of growth. This problem is further magnified by the small size of many of these lesions now being routinely detected following the introduction of multislice CT scanners capable of acquiring contiguous high resolution 1 to 1.25 mm sections throughout the thorax in a single breathhold period. Although segmentation of solid nodules can be used clinically to determine volume doubling times quantitatively, reliable methods for segmentation of pure ground glass nodules have yet to be introduced. Our purpose is to evaluate a newly developed computer-based segmentation method for rapid and reproducible measurements of pure ground glass nodules. 23 pure or mixed ground glass nodules were identified in a total of 8 patients by a radiologist and subsequently segmented by our computer-based method using Markov random field and shape analysis. The computer-based segmentation was initialized by a click point. Methodological consistency was assessed using the overlap ratio between 3 segmentations initialized by 3 different click points for each nodule. The 95% confidence interval on the mean of the overlap ratios proved to be [0.984, 0.998]. The computer-based method failed on two nodules that were difficult to segment even manually either due to especially low contrast or markedly irregular margins. While achieving consistent manual segmentation of ground glass nodules has proven problematic most often due to indistinct boundaries and inter-observer variability, our proposed method introduces a powerful new tool for obtaining reproducible quantitative measurements of these lesions. It is our intention to further document the value of this approach with a still larger set of ground glass nodules.
机译:毛玻璃结节(GGNs)已被证明在肺癌诊断中特别成问题,因为尽管它们经常是恶性的,但它们的生长速度极慢。在引入多层CT扫描仪后,现在可以常规检测到许多这些病变的小尺寸,从而进一步扩大了这个问题,这些多层CT扫描仪可以在一次屏气期间在整个胸腔中获取连续的高分辨率1至1.25 mm切片。尽管可以在临床上使用固体小结节的分割来定量确定体积倍增时间,但尚未引入可靠的方法来分割纯毛玻璃结节。我们的目的是评估一种新开发的基于计算机的分割方法,用于对纯磨玻璃结节进行快速且可重复的测量。放射科医生在总共8例患者中鉴定出23种纯净或混合的毛玻璃结节,随后使用马尔可夫随机场和形状分析通过我们基于计算机的方法进行了细分。通过单击点初始化基于计算机的细分。方法学的一致性是通过每个结节的3个不同点击点初始化的3个分段之间的重叠率来评估的。重叠率平均值的95%置信区间证明为[0.984,0.998]。基于计算机的方法对两个结节都失败了,这两个结节甚至由于对比度特别低或边缘明显不规则而难以手动分割。尽管由于边界不清晰和观察者之间的可变性而导致对磨玻璃结节进行一致的手动分割是最常见的问题,但我们提出的方法引入了一种强大的新工具,可以对这些病变进行可重复的定量测量。我们打算用更多的磨玻璃结节进一步证明这种方法的价值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号