首页> 外文会议>Image processing: algorithms and systems XIII >Intended Motion Estimation Using Fuzzy Kalman Filtering for UAV Image Stabilization with Large Drifting
【24h】

Intended Motion Estimation Using Fuzzy Kalman Filtering for UAV Image Stabilization with Large Drifting

机译:基于模糊卡尔曼滤波的预期运动估计用于大漂移无人机图像稳定

获取原文
获取原文并翻译 | 示例

摘要

Videos from a small Unmanned Aerial Vehicle (UAV) are always unstable because of the wobble of the vehicle and the impact of surroundings, especially when the motion has a large drifting. Electronic image stabilization aims at removing the unwanted wobble and obtaining the stable video. Then estimation of intended motion , which represents the tendency of global motion , becomes the key to image stabilization. It is usually impossible for general methods of intended motion estimation to obtain stable intended motion remaining as much information of video images and getting a path as much close to the real flying path at the same time. This paper proposed a fuzzy Kalman filtering method to estimate the intended motion to solve these problems. Comparing with traditional methods, the fuzzy Kalman filtering method can achieve better effect to estimate the intended motion.
机译:小型的无人机(UAV)的视频总是不稳定,这是因为飞机的摆动和周围环境的影响,尤其是在运动漂移较大的情况下。电子图像稳定旨在消除不必要的摆动并获得稳定的视频。然后,代表整体运动趋势的预期运动的估计成为图像稳定的关键。对于通常的预期运动估计方法,通常不可能获得稳定的预期运动,该稳定的预期运动保留了尽可能多的视频图像信息,并且同时获得了与实际飞行路径尽可能近的路径。为了解决这些问题,本文提出了一种模糊卡尔曼滤波方法来估计目标运动。与传统方法相比,模糊卡尔曼滤波方法可以更好地估计目标运动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号