首页> 外文会议>Image processing: algorithms and systems X ; and Parallel processing for imaging applications II >An Homomorphic Filtering And Expectation Maximization Approach For The Point Spread Function Estimation In Ultrasound Imaging
【24h】

An Homomorphic Filtering And Expectation Maximization Approach For The Point Spread Function Estimation In Ultrasound Imaging

机译:超声成像中点扩散函数估计的同态滤波和期望最大化方法

获取原文
获取原文并翻译 | 示例

摘要

In modern ultrasound imaging systems, the spatial resolution is severely limited due to the effects of both the finite aperture and overall bandwidth of ultrasound transducers and the non-negligible width of the transmitted ultrasound beams. This low spatial resolution remains the major limiting factor in the clinical usefulness of medical ultrasound images. In order to recover clinically important image details, which are often masked due to this resolution limitation, an image restoration procedure should be applied. To this end, an estimation of the Point Spread Function (PSF) of the ultrasound imaging system is required. This paper introduces a novel, original, reliable, and fast Maximum Likelihood (ML) approach for recovering the PSF of an ultrasound imaging system. This new PSF estimation method assumes as a constraint that the PSF is of known parametric form. Under this constraint, the parameter values of its associated Modulation Transfer Function (MTF) are then efficiently estimated using a homomorphic filter, a denoising step, and an expectation-maximization (EM) based clustering algorithm. Given this PSF estimate, a deconvolution can then be efficiently used in order to improve the spatial resolution of an ultrasound image and to obtain an estimate (independent of the properties of the imaging system) of the true tissue reflectivity function. The experiments reported in this paper demonstrate the efficiency and illustrate all the potential of this new estimation and blind deconvolution approach.
机译:在现代超声成像系统中,空间分辨率由于超声换能器的有限孔径和总带宽以及所传输的超声束的宽度不可忽略而受到严重限制。这种低空间分辨率仍然是医学超声图像临床实用性的主要限制因素。为了恢复通常由于该分辨率限制而被掩盖的临床重要图像细节,应应用图像恢复程序。为此,需要对超声成像系统的点扩展函数(PSF)进行估计。本文介绍了一种新颖,原始,可靠且快速的最大似然(ML)方法,用于恢复超声成像系统的PSF。这种新的PSF估计方法假定PSF具有已知的参数形式作为约束。在此约束下,然后使用同态滤波器,去噪步骤和基于期望最大化(EM)的聚类算法,可以有效地估计其关联的调制传递函数(MTF)的参数值。给定该PSF估计值,然后可以有效地使用去卷积,以提高超声图像的空间分辨率并获得真实组织反射率函数的估计值(与成像系统的属性无关)。本文报道的实验证明了这种效率,并说明了这种新的估计和盲反卷积方法的所有潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号