首页> 外文会议>Image Processing: Algorithms and Systems, Neural Networks, and Machine Learning >Optimization procedures for the estimation of phase portrait parameters of orientation fields
【24h】

Optimization procedures for the estimation of phase portrait parameters of orientation fields

机译:取向场相像参数估计的优化程序

获取原文
获取原文并翻译 | 示例

摘要

Oriented patterns in an image often convey important information regarding the scene or the objects contained. Given an image presenting oriented texture, the orientation field of the image is a map that depicts the orientation angle of the texture at each pixel. Rao and Jain developed a method to describe oriented patterns in an image based on the association between the orientation field of a textured image and the phase portrait generated by a pair of linear first-order differential equations. The estimation of the model parameters is a nonlinear, nonconvex optimization problem, and practical experience shows that irrelevant local minima can lead to convergence to inappropriate results. We investigated the performance of four optimization algorithms for the estimation of the optimal phase portrait parameters for a given orientation field. The investigated algorithms are: nonlinear least-squares, linear least-squares, iterative linear least-squares, and simulated annealing. The algorithms are evaluated and compared in terms of the error between the estimated parameters and the parameters known by design, in the presence of noise in the orientation field and imprecision in the initialization of the parameters. The computational effort required by each algorithm is also assessed. Individually, the simulated annealing procedure yielded low fixed-point and parameter errors over the entire range of noise tested, whereas the performance of the other methods deteriorated with higher levels of noise. The use of the result of simulated annealing for the initialization of the nonlinear least-squares method led to further improvement upon the simulated annealing results.
机译:图像中的定向模式通常传达有关场景或所包含对象的重要信息。给定图像呈现定向纹理,则图像的定向字段是一个图,该图描述了每个像素处纹理的定向角。 Rao和Jain开发了一种方法,用于根据纹理图像的方向场和一对线性一阶微分方程生成的相像之间的关联来描述图像中的方向图。模型参数的估计是一个非线性的,非凸的优化问题,实践经验表明,不相关的局部极小值可能导致收敛到不合适的结果。我们研究了四种优化算法的性能,用于估计给定方向场的最佳相位肖像参数。研究的算法是:非线性最小二乘,线性最小二乘,迭代线性最小二乘和模拟退火。在定向字段中存在噪声且参数初始化不精确的情况下,根据估计的参数与设计已知的参数之间的误差对算法进行评估和比较。还评估了每种算法所需的计算量。单独地,模拟的退火程序在整个测试噪声范围内产生较低的固定点和参数误差,而其他方法的性能则随着噪声水平的提高而降低。将模拟退火的结果用于非线性最小二乘法的初始化导致对模拟退火结果的进一步改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号