首页> 外文会议>Image Analysis and Recognition >Automatic Individual Detection and Separation of Multiple Overlapped Nematode Worms Using Skeleton Analysis
【24h】

Automatic Individual Detection and Separation of Multiple Overlapped Nematode Worms Using Skeleton Analysis

机译:利用骨架分析自动检测和分离多个重叠的线虫蠕虫

获取原文
获取原文并翻译 | 示例

摘要

We present a new method for detection and separation of individual nematode worms in a still image. After pre-processing stage, which includes image binarization, filling the small holes, obtaining the skeleton of the new image and pruning the extra branches of skeleton, we split a skeleton into several branches by eliminating the connection pixels (pixels with more than 2 neighbors). Then we compute angles of all branches and compare the angles of the neighboring branches. The neighbor branches with angle differences less than a threshold are connected. Our method has been applied to a database of 54 overlap worms and results in 82% accuracy as automatic and 89% as semi-automatic with some limited user interaction.
机译:我们提出了一种用于在静止图像中检测和分离单个线虫的新方法。经过预处理阶段(包括图像二值化,填充小孔,获取新图像的骨架并修剪骨架的多余分支)之后,我们通过消除连接像素(具有2个以上相邻像素的像素)将骨架分成多个分支)。然后,我们计算所有分支的角度并比较相邻分支的角度。连接角度差小于阈值的相邻分支。我们的方法已应用于54个重叠蠕虫的数据库,在某些有限的用户交互作用下,自动精度为82%,半自动精度为89%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号