首页> 外文会议>IFAC (International Federation of Automatic Control) World Congress >A SELECTIVE IMPROVEMENT TECHNIQUE FOR FASTENING NEURO-DYNAMIC PROGRAMMING IN WATER RESOURCE NETWORK MANAGEMENT
【24h】

A SELECTIVE IMPROVEMENT TECHNIQUE FOR FASTENING NEURO-DYNAMIC PROGRAMMING IN WATER RESOURCE NETWORK MANAGEMENT

机译:水资源网络管理中动态编程的选择性改进技术。

获取原文

摘要

An approach to the integrated water resources management based on Neuro-Dynamic Programming (NDP) with an improved technique for fastening its Artificial Neural Network (ANN) training phase will be presented. When dealing with networks of water resources, Stochastic Dynamic Programming provides an effective solution methodology but suffers from the so-called “curse of dimensionality”, that rapidly leads to the problem intractability. NDP can sensibly mitigate this drawback by approximating the solution with ANNs. However in the real world applications NDP shows to be considerably slowed just by this ANN training phase. To overcome this limit a new training architecture (SIEVE: Selective Improvement by Evolutionary Variance Extinction) has been developed. In this paper this new approach is theoretically introduced and some preliminary results obtained on a real world case study are presented.
机译:将提出一种基于神经动态规划(NDP)的水资源综合管理方法,并采用一种改进的技术来固定其人工神经网络(ANN)训练阶段。在处理水资源网络时,随机动态规划提供了一种有效的解决方法,但是遭受了所谓的“维数诅咒”,这很快导致问题难以解决。 NDP可以通过用ANN逼近解决方案来合理地缓解此缺点。但是,在实际应用中,仅通过该ANN训练阶段,NDP的速度就大大降低了。为了克服这个限制,已经开发了一种新的训练体系结构(SIEVE:通过进化方差消除的选择性改进)。在本文中,从理论上介绍了这种新方法,并给出了在实际案例研究中获得的一些初步结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号