首页> 外文期刊>IEEE Journal on Selected Areas in Communications >Call admission control and routing in integrated services networks using neuro-dynamic programming
【24h】

Call admission control and routing in integrated services networks using neuro-dynamic programming

机译:使用神经动态编程的集成服务网络中的呼叫准入控制和路由

获取原文
获取原文并翻译 | 示例

摘要

We consider the problem of call admission control (CAC) and routing in an integrated services network that handles several classes of calls of different value and with different resource requirements. The problem of maximizing the average value of admitted calls per unit time (or of revenue maximization) is naturally formulated as a dynamic programming problem, but is too complex to allow for an exact solution. We use methods of neuro-dynamic programming (NDP) [reinforcement learning (RL)], together with a decomposition approach, to construct dynamic (state-dependent) call admission control and routing policies. These policies are based on state-dependent link costs, and a simulation-based learning method is employed to tune the parameters that define these link costs. A broad set of experiments shows the robustness of our policy and compares its performance with a commonly used heuristic.
机译:我们考虑了一个集成服务网络中的呼叫准入控制(CAC)和路由问题,该网络可以处理具有不同价值和不同资源需求的几类呼叫。自然地将最大化每单位时间(或收益最大化)所允许呼叫的平均值的问题描述为动态编程问题,但是它过于复杂而无法提供精确的解决方案。我们使用神经动态程序设计(NDP)[强化学习(RL)]的方法,以及分解方法,来构造动态(取决于状态)的呼叫允许控制和路由策略。这些策略基于状态相关的链接成本,并且采用基于仿真的学习方法来调整定义这些链接成本的参数。大量的实验显示了我们策略的稳健性,并将其性能与常用的启发式算法进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号