首页> 外文会议>IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops >Elastic Handling of Predictor Phase in Functional Regression Models
【24h】

Elastic Handling of Predictor Phase in Functional Regression Models

机译:功能回归模型中预测相的弹性处理

获取原文

摘要

Functional variables serve important roles as predictors in a variety of pattern recognition and vision applications. Focusing on a specific subproblem, termed scalar-on-function regression, most current approaches adopt the standard L2 inner product to form a link between functional predictors and scalar responses. These methods may perform poorly when predictor functions contain nuisance phase variability, i.e., predictors are temporally misaligned due to noise. While a simple solution could be to prealign predictors as a pre-processing step, before applying a regression model, this alignment is seldom optimal from the perspective of regression. We propose a new approach, termed elastic functional regression, where alignment is included in the regression model itself, and is performed in conjunction with the estimation of other model parameters. This model is based on a norm-preserving warping of predictors, not the standard time warping of functions, and provides better prediction in situations where the shape or the amplitude of the predictor is more useful than its phase. We demonstrate the effectiveness of this framework using simulated and stock market data.
机译:功能变量在各种模式识别和视觉应用中起着重要的预测作用。关注于一个特定的子问题,即标量函数回归,大多数当前方法采用标准的L2内积来形成功能预测变量和标量响应之间的链接。当预测器功能包含讨厌的相位可变性(即预测器由于噪声在时间上未对齐)时,这些方法的效果可能会很差。虽然简单的解决方案可能是将预测变量作为预处理步骤进行预处理,但在应用回归模型之前,从回归的角度来看,这种对准很少是最佳的。我们提出了一种称为弹性功能回归的新方法,该方法中的对齐方式包含在回归模型本身中,并且与其他模型参数的估计一起执行。此模型基于预测变量的保持规范的变形,而不是函数的标准时间变形,并且在预测变量的形状或幅度比其相位更有用的情况下提供更好的预测。我们使用模拟和股市数据证明了该框架的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号