首页> 外文会议>IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops >Improved Extraction of Objects from Urine Microscopy Images with Unsupervised Thresholding and Supervised U-net Techniques
【24h】

Improved Extraction of Objects from Urine Microscopy Images with Unsupervised Thresholding and Supervised U-net Techniques

机译:使用无监督阈值和有监督U-net技术改进从尿液显微图像中提取对象

获取原文

摘要

We propose a novel unsupervised method for extracting objects from urine microscopy images and also applied U-net for extracting these objects. We fused these proposed methods with a known edge thresholding technique from an existing work on segmentation of urine microscopic images. Comparison between our proposed methods and the existing work showed that for certain object types the proposed unsupervised method with or without edge thresholding outperforms the other methods, while in other cases the U-net method with or without edge thresholding outperforms the other methods. Overall the proposed unsupervised method along with edge thresholding worked the best by extracting maximum number of objects and minimum number of artifacts. On a test dataset, the artifact to object ratio for the proposed unsupervised method was 0.71, which is significantly better than that of 1.26 for the existing work. The proposed unsupervised method along with edge thresholding extracted 3208 objects as compared to 1608 by the existing work. To the best of our knowledge this is the first application of Deep Learning for extraction of clinically significant objects in urine microscopy images.
机译:我们提出了一种新的无监督方法,用于从尿液显微镜图像中提取对象,并且还应用了U-net来提取这些对象。我们将这些建议的方法与现有的尿液显微图像分割工作中已知的边缘阈值技术融合在一起。我们提出的方法与现有工作之间的比较表明,对于某些对象类型,提出的带有或不带有边缘阈值的无监督方法优于其他方法,而在其他情况下,带有或不带有边缘阈值的U-net方法则优于其他方法。总体而言,所提出的无监督方法与边缘阈值方法通过提取最大数量的对象和最少数量的伪像,效果最佳。在测试数据集上,所提出的无监督方法的工件与对象的比率为0.71,明显优于现有工作的1.26。与现有技术的1608个对象相比,所提出的无监督方法以及边缘阈值提取了3208个对象。据我们所知,这是深度学习在尿液显微镜图像中提取具有临床意义的对象的首次应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号